首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deuterium isotope effects on carbonyl 13C magnetic shielding were measured for the backbone carbonyl groups in BPTI (basic pancreatic trypsin inhibitor), and interpreted as a measure of hydrogen bond energies. The effects originate from peptide amide proton deuterium substitution and were observed on carbonyl carbons separated by two or three covalent bonds from the amide H/D. Two-bond isotope effects depend on the energy of the hydrogen bond donated by NH/D. Calibration of the effect with model compound data leads to hydrogen bond enthalpies less than 4.7 kcal/mol. Isotope effects over three bonds from the amide H/D to the carbonyl carbon of the same amino acid residue are observed for seven carbonyl resonances in BPTI. The three-bond isotope effects are highly related to the various backbone conformations. The largest effects are observed for residues with an approximate syn- periplanar conformation of the H-N-C alpha-C = O atoms, as realized for many residues in the BPTI antiparallel beta-sheet. The residues that show measurable three-bond effects have unusually short distances between H and O. The size of this effect decreases rapidly with increased O..H distance in the open five-membered ring. This observation suggests appreciable interactions in these rings.  相似文献   

2.
Changes in the molecular conformation of proteins can result from a variety of perturbations, and can play crucial roles in the regulation of biological activity. A new solution NMR method has been applied to monitor ligand-induced changes in hydrogen bond geometry in the chicken c-Src SH3 domain. The structural response of this domain to ligand binding has been investigated by measuring trans-hydrogen bond (15)N-(13)C' scalar couplings in the free state and when bound to the high affinity class I ligand RLP2, containing residues RALPPLPRY. A comparison between hydrogen bonds in high resolution X-ray structures of this domain and those observed via (h3)J(NC') couplings in solution shows remarkable agreement. Two backbone-to-side-chain hydrogen bonds are observed in solution, and each appears to play a role in stabilization of loop structure. Reproducible ligand-induced changes in trans-hydrogen bond scalar couplings are observed across the domain that translate into changes in hydrogen bond length ranging between 0.02 to 0.12 A. The observed changes can be rationalized by an induced fit mechanism in which hydrogen bonds across the protein participate in a compensatory response to forces imparted at the protein-ligand interface. Upon ligand binding, mutual intercalation of the two Leu-Pro segments of the ligand between three aromatic side-chains protruding from the SH3 surface wedges apart secondary structural elements within the SH3 domain. This disruption is transmitted in a domino-like effect across the domain through networks of hydrogen bonded peptide planes. The unprecedented resolution obtained demonstrates the ability to characterize subtle structural rearrangements within a protein upon perturbation, and represents a new step in the endeavor to understand how hydrogen bonds contribute to the stabilization and function of biological macromolecules.  相似文献   

3.
Density functional theory calculations of isolated Watson–Crick A:U and A:T base pairs predict that adenine 13C2 trans-hydrogen bond deuterium isotope shifts due to isotopic substitution at the pyrimidine H3, 2hΔ13C2, are sensitive to the hydrogen-bond distance between the N1 of adenine and the N3 of uracil or thymine, which supports the notion that 2hΔ13C2 is sensitive to hydrogen-bond strength. Calculated 2hΔ13C2 values at a given N1–N3 distance are the same for isolated A:U and A:T base pairs. Replacing uridine residues in RNA with 5-methyl uridine and substituting deoxythymidines in DNA with deoxyuridines do not statistically shift empirical 2hΔ13C2 values. Thus, we show experimentally and computationally that the C7 methyl group of thymine has no measurable affect on 2hΔ13C2 values. Furthermore, 2hΔ13C2 values of modified and unmodified RNA are more negative than those of modified and unmodified DNA, which supports our hypothesis that RNA hydrogen bonds are stronger than those of DNA. It is also shown here that 2hΔ13C2 is context dependent and that this dependence is similar for RNA and DNA. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

4.
Khare D  Alexander P  Orban J 《Biochemistry》1999,38(13):3918-3925
Protium-deuterium fractionation factors (phi) were determined for more than 85% of the backbone amide protons in the IgG binding domains of protein G, GB1 and GB2, from NMR spectra recorded over a range of H2O/D2O solvent ratios. Previous studies suggest a correlation between phi and hydrogen bond strength; amide and hydroxyl groups in strong hydrogen bonds accumulate protium (phi < 1), while weak hydrogen bonds accumulate deuterium (phi > 1). Our results show that the alpha-helical residues have slightly lower phi values (1.03 +/- 0.05) than beta-sheet residues (1.12 +/- 0.07), on average. The lowest phi value obtained (0.65) does not involve a backbone amide but rather is for the interaction between two side chains, Y45 and D47. Fractionation factors for solvent-exposed residues are between the alpha-helix and beta-sheet values, on average, and are close to those for random coil peptides. Further, the difference in phiav between alpha-helix and solvent-exposed residues is small, suggesting that differences in hydrogen bond strength for intrachain hydrogen bonds and amide...water hydrogen bonds are also small. Overall, the enrichment for deuterium suggests that most backbone...backbone hydrogen bonds are weak.  相似文献   

5.
Hydrogen bonds are important interaction forces observed in protein structures. They can be classified as stronger or weaker depending on their energy, thereby reflecting on the type of donor. The contribution of weak hydrogen bonds is deemed as an important factor toward structure stability along with the stronger bonds. One such bond, the C‐H…O type hydrogen bond, is shown to make a contribution in maintaining three dimensional structures of proteins. Apart from their presence within protein structures, the role of these bonds in protein–ligand interactions is also noteworthy. In this study, we present a statistical analysis on the presence of C‐H…O hydrogen bonds observed between FKBPs and their cognate ligands. The FK506‐binding proteins (FKBPs) carry peptidyl cis–trans isomerase activity apart from the immunosuppressive property by binding to the immunosuppressive drugs FK506 or rapamycin. Because the active site of FKBPs is lined up by many hydrophobic residues, we speculated that the prevalence of C‐H…O hydrogen bonds will be considerable. In a total of 25 structures analyzed, a higher frequency of C‐H…O hydrogen bonds is observed in comparison with the stronger hydrogen bonds. These C‐H…O hydrogen bonds are dominated by a highly conserved donor, the Cα/β of Val55 and an acceptor, the backbone oxygen of Glu54. Both these residues are positioned in the β4‐α1 loop, whereas the other residues Tyr26, Phe36 and Phe99 with higher frequencies are lined up at the opposite face of the active site. These preferences could be implicated in FKBP pharmacophore models toward enhancing the ligand affinity. This study could be a prelude to studying other proteins with hydrophobic pockets to gain better insights into ligand recognition. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Deuterium isotope effects and fractionation factors of N1...H3–N3 hydrogen bonded Watson–Crick A:T base pairs of two DNA dodecamers are presented here. Specifically, two-bond deuterium isotope effects on the chemical shifts of 13C2 and 13C4, 213C2 and 213C4, and equilibrium deuterium/protium fractionation factors of H3, , were measured and seen to correlate with the chemical shift of the corresponding imino proton, H3. Downfield-shifted imino protons associated with larger values of 213C2 and 213C4 and smaller values, which together suggested that the effective H3–N3 vibrational potentials were more anharmonic in the stronger hydrogen bonds of these DNA molecules. We anticipate that 213C2, 213C4 and values can be useful gauges of hydrogen bond strength of A:T base pairs.  相似文献   

7.
Oxygen-17 isotope was introduced into the alpha-carboxyl group of glycine, 1-phenylalanine, 1-leucine and 1-tyrosine by acid catalyzed exchange of 17O from H2O(17) or by acid hydrolysis of respective amino acid methyl esters in H2O(17). Quantitative enrichment of glycine was achieved by acid hydrolysis of amino acetonitrile in H2O(17). For alpha-amino protection in amino acids t-butoxycarbonyl (Boc) group was employed for 17O labeled enkephalin synthesis. Five analogues of Leu-enkephalins (I-V) labeled with 17O at different amino acid residues were synthesized by solid phase method. 17O n.m.r. spectra were measured at 24.4 and 67.8 MHz for Leu-enkephalins 17O labeled at Gly2 and Phe4 positions. A downfield shift was observed for 17O labeled Gly2 Leu-enkephalin upon heating. This shift is indicative of the rupture of intramolecular hydrogen bonds. The preliminary results confirm the hypothesis that an intramolecular hydrogen bond exists between the carbonyl group of Gly2 and NH group of Leu5.  相似文献   

8.
Conformational preferences of the base substituent in hypermodified nucleotide queuosine 5'-monophosphate 'pQ' and its protonated form 'pQH+' have been studied using quantum chemical Perturbative Configuration Interaction with Localized Orbitals PCILO method. The salient points have also been examined using molecular mechanics force field MMFF, parameterized modified neglect of differential overlap PM3 and Hartree Fock-Density Functional Theory HF DFT (pBP/DN*) approaches. Aqueous solvation of pQ and pQH+ has also been studied using molecular dynamics simulations. Consistent with the observed crystal structure, in isolated protonated form pQH+, the quaternary amine HN(13)(+)H, of the sidechain having 7-aminomethyl linkage, hydrogen bonds with the carbonyl oxygen O(10) of the base. However, N(13)H-O(10) hydrogen bonding is not preferred for unprotonated pQ, whether isolated or hydrated. Interaction between the 5'-phosphate and the 7-aminomethyl group is more likely for isolated pQ. The cyclopentenediol hydroxyl group O4"H may hydrogen bond with the O(10) in isolated pQ as well as in pQH+. The O4"H may hydrogen bond with the 5'-phosphate as well. The presence of -CH2-NH- and O"H groups in pQ and pQH+ allows interesting possibilities for intranucleotide hydrogen bonds and interactions across the anticodon loop. Simultaneous hydrogen bonds O2P-HN(13)+H-O(10) are indicated for hydrated pQH+. Unlike weak involvement of O4"H, these interactions also persist in hydrated pQH+ and may much reduce backbone flexibility. Resulting sub-optimal Q:C base pairing leads to unbiased reading of U or C as the third codon letter. Cyclopentenediol hydroxyl groups may interact with other biomolecules, allowing specific recognition. Prospective pQ(34) and pQ(34)H+ sites for codon-anticodon base pairing remain unhindered, but non canonical Q:G base pairing (amber-suppression) is ruled out.  相似文献   

9.
In sequence-function investigations, approaches are needed for rapidly screening protein variants for possible changes in conformation. Recent NMR methods permit direct detection of hydrogen bonds through measurements of scalar couplings that traverse hydrogen bonds (trans-hydrogen bond couplings). We have applied this approach to screen a series of five single site mutants of the sweet protein brazzein with altered sweetness for possible changes in backbone hydrogen bonding with respect to wild-type. Long range, three-dimensional data correlating connectivities among backbone 1HN, 15N, and 13C' atoms were collected from the six brazzein proteins labeled uniformly with carbon-13 and nitrogen-15. In wild-type brazzein, this approach identified 17 backbone hydrogen bonds. In the mutants, altered magnitudes of the couplings identified hydrogen bonds that were strengthened or weakened; missing couplings identified hydrogen bonds that were broken, and new couplings indicated the presence of new hydrogen bonds. Within the series of brazzein mutants investigated, a pattern was observed between sweetness and the integrity of particular hydrogen bonds. All three "sweet" variants exhibited the same pattern of hydrogen bonds, whereas all three "non-sweet" variants lacked one hydrogen bond at the middle of the alpha-helix, where it is kinked, and one hydrogen bond in the middle of beta-strands II and III, where they are twisted. Two of the non-sweet variants lack the hydrogen bond connecting the N and C termini. These variants showed greater mobility in the N- and C-terminal regions than wild-type brazzein.  相似文献   

10.
The extent and strength of the hydrogen bond networks in rubredoxins from the hyperthermophile Pyrococcus furiosus (PfRd), and its mesophilic analogue Clostridium pasteurianum (CpRd), are examined and compared using NMR spectroscopy. NMR parameters examined in this study include through-hydrogen bond (h3)J(NC)(') scalar couplings and (1)H, (13)C, and (15)N chemical shifts, as well as covalent (1)J(NH) and (1)J(NC)(') scalar couplings. These parameters have allowed the characterization in solution of 12 hydrogen bonds in each protein. Despite a 83% sequence homology and a low RMSD for the backbone heavy atoms (0.648 A) in the crystalline state, subtle, but definite, changes have been identified in the detailed hydrogen-bonding patterns. CpRd shows an increased number of hydrogen bonds in the triple-stranded beta-sheet and an additional hydrogen bond in the multiple-turn segment including residues 14-32. On the other hand, PfRd exhibits an overall strengthening of N-H...O=C hydrogen bonds in the loops involved at the metal binding site as well as evidence for an additional NH...S(Cys) hydrogen bond involving the alanine residue 44. These data, as well as temperature dependence of the NMR parameters, suggest that the particular NMR hydrogen bond pattern found in the hyperthermophile rubredoxin leads to an increased stabilization at the metal binding pocket. It seems to result from a subtle redistribution of hydrogen-bonding interactions between the triple-stranded beta-sheet and the actual metal binding site.  相似文献   

11.
This study investigated the influence of meteorological, pedospheric and physiological factors on the water relations of Scots pine, as characterized by the origin of water taken up, by xylem transport as well as by carbon isotope discrimination (Delta13C) and oxygen isotope enrichment (Delta18O) of newly assimilated organic matter. For more than 1 year, we quantified delta2H and delta18O of potential water sources and xylem water as well as Delta13C and Delta18O in twig and trunk phloem organic matter biweekly, and related these values to continuously measured or modelled meteorological parameters, soil water content, stand transpiration (ST) and canopy stomatal conductance (G(s)). During the growing season, delta18O and delta2H of xylem water were generally in a range comparable to soil water from a depth of 2-20 cm. Long residence time of water in the tracheids uncoupled the isotopic signals of xylem and soil water in winter. Delta18O but not Delta13C in phloem organic matter was directly indicative of recent environmental conditions during the whole year. Delta18O could be described applying a model that included 18O fractionation associated with water exchange between leaf and atmosphere, and with the production of organic matter as well as the influence of transpiration. Phloem Delta13C was assumed to be concertedly influenced by G(s) and photosynthetically active radiation (PAR) (as a proxy for photosynthetic capacity). We conclude that isotope signatures can be used as effective tools (1) to characterize the seasonal dynamics in source and xylem water, and (2) to assess environmental effects on transpiration and G(s) of Scots pine, thus helping to understand and predict potential impacts of climate change on trees and forest ecosystems.  相似文献   

12.
A model for the complex between E. coli RNase HI and the DNA/RNA hybrid (previously refined by molecular dynamics simulations) was used to determine the impact of the internucleotide linkage modifications (either 3′–O–CH2–P–O–5′ or 3′–O–P–CH2–O–5′) on the ability of the modified-DNA/RNA hybrid to create a complex with the protein. Modified internucleotide linkages were incorporated systematically at different positions close to the 3′-end of the DNA strand to interfere with the DNA binding site of RNase H. Altogether, six trajectories were produced (length 1.5). Mutual hydrogen bonds connecting both strands of the nucleic acids hybrid, DNA with RNase H, RNA with RNase H, and the scissile bond with the Mg++ · 4H2O chelate complex (bound in the active site) were analyzed in detail. Many residues were involved in binding of the DNA (Arg88, Asn84, Trp85, Trp104, Tyr73, Lys99, Asn100, Thr43, and Asn16) and RNA (Gln76, Gln72, Tyr73, Lys122, Glu48, Asn44, and Cys13) strand to the substrate-binding site of the RNase H enzyme. The most remarkable disturbance of the hydrogen bonding net was observed for structures with modified internucleotide linkages positioned in a way to interact with the Trp104, Tyr73, Lys99, and Asn100 residues (situated in the middle of the DNA binding site, where a cluster of Trp residues forms a rigid core of the protein structure).  相似文献   

13.
15N-15N scalar coupling constants across base pair hydrogen bonds (2hJ(NN)) were studied using residue- and atom-specifically 15N labeled DNA oligomers. The N3 atom selectively 15N enriched 2'-deoxycytidine and thymidine, and the uniformly 15N enriched 2'-deoxyadenosine and 2'-deoxyguanosine, were chemically prepared and incorporated into two DNA oligomers, d(CGCGAATTCGCG)2 and d(CGCAAAAAGCG).d(CGCTTTTTGCG). This isotope labeling enabled us to determine the 2hJ(NN) value from the splitting of the 15N 1D spectrum. Additionally, it enabled the determination of 2hJ(NN) in D2O quite easily and highly quantitatively. The temperature and DNA sequence dependence were examined for these oligomers. The sequence dependence was not clear; however, a significant decrease of 2hJ(NN) was observed by elevating the temperature. This temperature dependence was not due to the hydrogen exchange, since the addition of 20 mM NH3 did not change the 2hJ(NN) values. The 2hJ(NN) values in D2O were somewhat smaller than those in H2O. As compared to our 15N 1D method, the quantitative HNN-COSY method gave systematically smaller 2hJ(NN) values in our system, due to the lower 15N fraction of our sample (79 and 88% for dA and the other nucleotides, respectively) and the insufficient power of the 15N RF pulse (B1 = 6.6 kHz). These systematic differences were recovered by theoretical correction of the 15N isotope fraction contribution, by using the composite 15N 180 degrees pulse in a quantitative HNN-COSY experiment.  相似文献   

14.
(Pro-Pro-Gly)10 [(PPG10)], a collagen-like polypeptide, forms a triple-helical, polyproline-II structure in aqueous solution at temperatures somewhat lower than physiological, with a melting temperature of 24.5 degrees C. In this article, we present circular dichroism spectra that demonstrate an increase of the melting temperature with the addition of increasing amounts of D2O to an H2O solution of (PPG)10, with the melting temperature reaching 40 degrees C in pure D2O. A thermodynamic analysis of the data demonstrates that this result is due to an increasing enthalpy of unfolding in D2O vs. H2O. To provide a theoretical explanation for this result, we have used a model for hydration of (PPG)10 that we developed previously, in which inter-chain water bridges are formed between sterically crowded waters and peptide bond carbonyls. Energy minimizations were performed upon this model using hydrogen bond parameters for water, and altered hydrogen bond parameters that reproduced the differences in carbonyl oxygen-water oxygen distances found in small-molecule crystal structures containing oxygen-oxygen hydrogen bonds between organic molecules and H2O or D2O. It was found that using hydrogen bond parameters that reproduced the distance typical of hydrogen bonds to D2O resulted in a significant lowering of the potential energy of hydrated (PPG)10. This lowering of the energy involved energetic terms that were only indirectly related to the altered hydrogen bond parameters, and were therefore not artifactual; the intra-(PPG10) energy, plus the water-(PPG10) van der Waals energy (not including hydrogen bond interactions), were lowered enough to qualitatively account for the lower enthalpy of the triple-helical conformation, relative to the unfolded state, in D2O vs. H2O. This result indicates that the geometry of the carbonyl-D2O hydrogen bonds allows formation of good hydrogen bonds without making as much of an energetic sacrifice from other factors as in the case of hydration by H2O.  相似文献   

15.
Vinarov DA  Miziorko HM 《Biochemistry》2000,39(12):3360-3368
Binding of [1,2-(13)C]acetyl-CoA to wild-type 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) synthase is characterized by large upfield shifts for C1 (184 ppm, Deltadelta = 20 ppm) and C2 (26 ppm, Deltadelta = 7 ppm) resonances that are attributable to formation of the covalent [1,2 -(13)C]acetyl-S-enzyme reaction intermediate. NMR spectra of [1, 2-(13)C]acetyl-S-enzyme prepared in H(2)(16)O versus H(2)(18)O indicate a 0.055 ppm upfield shift of the C1 resonance in the presence of the heavier isotope. The magnitude of this (18)O-induced (13)C shift suggests that the 184 ppm resonance is attributable to a reaction intermediate in which C1 exhibits substantial carbonyl character. No significant shift of the C2 resonance occurs. These observations suggest that, in the absence of second substrate (acetoacetyl-CoA), enzymatic addition of H(2)(18)O to the C1 carbonyl of acetyl-S-enzyme occurs to transiently produce a tetrahedral species. This tetrahedral adduct exchanges oxygen upon backward collapse to re-form the sp(2)-hybridized thioester carbonyl. In contrast with HMG-CoA synthase, C378G Zoogloea ramigera beta-ketothiolase, which also forms a (13)C NMR-observable covalent acetyl-enzyme species, exhibits no (18)O-induced shift. Formation of the [(13)C]acetyl-S-enzyme reaction intermediate of HMG-CoA synthase in D(2)O versus H(2)O is characterized by a time-dependent isotope-induced upfield shift of the C1 resonance (maximal shift = 0. 185 ppm) in the presence of the heavier isotope. A more modest upfield shift (0.080 ppm) is observed for C378G Z. ramigera beta-ketothiolase in similar experiments. The slow kinetics for the development of the deuterium-induced (13)C shift in the HMG-CoA synthase experiments suggest a specific interaction (hydrogen bond) with a slowly exchangeable proton (deuteron) of a side chain/backbone of an amino acid residue at the active site.  相似文献   

16.
Uchida K  Markley JL  Kainosho M 《Biochemistry》2005,44(35):11811-11820
A novel method for monitoring proton-deuteron (H/D) exchange at backbone amides is based on the observation of H/D isotope effects on the (13)C NMR signals from peptide carbonyls. The line shape of the carbonyl (13)C(i) signal is influenced by differential H/D occupancy at the two adjacent amides: the H(N)(i)(+1) (beta site) and the H(N)(i) (gamma site). At a carbon frequency of 75.4 MHz, the H --> D isotope shifts on the (13)C signal are about 5-7 Hz for exchange at the beta site and 2 Hz or less for exchange at the gamma site. Because the effects at the two sites are additive, the time dependence of the line shape of a particular carbonyl resonance can report not only the exchange rates at the individual sites but also the level of dual exchange. Therefore, the data can be analyzed to determine the rate (k(c)) and degree of correlated exchange (X(betagamma)) at the two sites. We have applied this approach to the investigation of the pH dependence of hydrogen exchange at several adjacent residues in Streptomyces subtilisin inhibitor (SSI). Two selectively labeled SSI proteins were produced: one with selective (13)C' labeling at all valyl residues and one with selective (13)C' labeling at all leucyl residues. This permitted the direct observation by one-dimensional (13)C NMR of selected carbonyl signals from residues with slowly exchanging amides at the i and i + 1 positions. The residues investigated were located in an alpha helix and in a five-stranded antiparallel beta sheet. Samples of the two labeled proteins were prepared at various pH values, and (13)C NMR spectra were collected at 50 degrees C prior to and at various times after transferring the sample from H(2)O to (2)H(2)O. Most of the slowly exchanging amides studied were intramolecular hydrogen-bond donors. In agreement with prior studies, the results indicated that the exchange rates of the amide hydrogens in proteins are governed not only by hydrogen bonding but also by other factors. For example, the amide hydrogen of Thr34 exchanges rapidly even though it is an intramolecular hydrogen-bond donor. Over nearly the whole pH range studied, the apparent rates of uncorrelated exchange (k(beta) and k(gamma)) were proportional to [OH(-)] and the apparent rates of correlated exchange at two adjacent sites (k(c)) were roughly proportional to [OH(-)](2). This enabled us to extract the pH-independent exchange rates (k(beta) degrees , k(gamma) degrees , and k(c) degrees ). In all cases in which correlated exchange could be measured, the observed sigmoidal pH dependence of X(betagamma) could be replicated roughly from the derived pH-independent rates.  相似文献   

17.
A model for the complex between E. coli RNase HI and the DNA/RNA hybrid (previously refined by molecular dynamics simulations) was used to determine the impact of the internucleotide linkage modifications (either 3-O-CH2-P-O-5' or 3-O-P-CH2-O-5) on the ability of the modified-DNA/RNA hybrid to create a complex with the protein. Modified internucleotide linkages were incorporated systematically at different positions close to the 3-end of the DNA strand to interfere with the DNA binding site of RNase H. Altogether, six trajectories were produced (length 1.5ns). Mutual hydrogen bonds connecting both strands of the nucleic acids hybrid, DNA with RNase H, RNA with RNase H, and the scissile bond with the Mg++. 4H2O chelate complex (bound in the active site) were analyzed in detaiL Many residues were involved in binding of the DNA (Arg88, Asn84, Trp85, Trp104, Tyr73, Lys99, Asn100, Thr43, and Asn 16) and RNA (Gln76, Gln72, Tyr73, Lys122, Glu48, Asn44, and Cys13) strand to the substrate-binding site of the RNase H enzyme. The most remarkable disturbance of the hydrogen bonding net was observed for structures with modified internucleotide linkages positioned in a way to interact with the Trp104, Tyr73, Lys99, and Asn100 residues (situated in the middle of the DNA binding site, where a cluster of Trp residues forms a rigid core of the protein structure).  相似文献   

18.
The non-detectability of NH...N hydrogen bonds in nucleic acids due to exchange broadened imino/amino protons has recently been addressed via the use of non-exchangeable protons for detecting internucleotide 2hJ(NN) couplings. In these applications, the appropriate non-exchangeable proton is separated by two bonds from the NH...N bond. In this paper, we extend the scope of this approach to protons which are separated by four bonds from the NH...N moiety. Specifically, we consider the case of the commonly occurring sheared G x A mismatch alignment, in which we use the adenine H2 proton to report on the (A)N6H6(1.2)...N3(G) hydrogen bond, in the presence of undetectable, exchange broadened N6H6(1.2) protons. Two sequences, the 'straight-through' (H6)N6N3H2 and 'out-and-back' H2N6N3 experiments, are presented for observing these correlations in H2O and D2O solution, respectively. The sequences are demonstrated on two uniformly 15N,13C labelled DNA samples: d(G1G2G3T4T5C6A7G8G9)2, containing a G3 x (C6-A7) triad involving a sheared G3 x A7 mismatch, and d(G1G2G3C4A5G6G7T8)4, containing an A5 x (G3 x G6 x G3 x G6) x A5 hexad involving a sheared G3 x A5 mismatch.  相似文献   

19.
Our present understanding of the nature of the transition state for protein folding depends predominantly on studies where individual side-chain contributions are mapped out by mutational analysis (phi value analysis). This approach, although extremely powerful, does not in general provide direct information about the formation of backbone hydrogen bonds. Here, we report the results of amide H/D isotope effect studies that probe the development of hydrogen bonded interactions in the transition state for the folding of a small alpha-beta protein, the N-terminal domain of L9. Replacement of amide protons by deuterons in a solvent of constant isotopic composition destabilized the domain, decreasing both its T(m) and Delta G(0) of unfolding. The folding rate also decreased. The parameter Phi(H/D), defined as the ratio of the effect of isotopic substitution upon the activation free energy to the equilibrium free energy was determined to be 0.6 in a D(2)O background and 0.75 in a H(2)O background, indicating that significant intraprotein hydrogen bond interactions are developed in the transition state for the folding of NTL9. The value is in remarkably good agreement with more traditional measures of the position of the transition state, which report on the relative burial of surface area. The results provide a picture of a compact folding transition state containing significant secondary structure. Indirect analysis argues that the bulk of the kinetic isotope effect arises from the beta-sheet-rich region of the protein, and suggests that the development of intraprotein hydrogen bonds in this region plays a critical role in the folding of NTL9.  相似文献   

20.
Monitoring photosynthetic isotope exchange is an important tool for predicting the influence of plant communities on the global carbon cycle in response to climate change. C(4) grasses play an important role in the global carbon cycle, but their contribution to the isotopic composition of atmospheric CO(2) is not well understood. Instantaneous measurements of (13)CO(2) (Delta(13)C) and C(18)OO (Delta(18)O) isotope exchange in five NAD-ME and seven NADP-ME C(4) grasses have been conducted to investigate the difference in photosynthetic CO(2) isotopic fractionation in these subgroups. As previously reported, the isotope composition of the leaf material (delta(13)C) was depleted in (13)C in the NAD-ME compared with the NADP-ME grasses. However, Delta(13)C was not different between subtypes at high light, and, although Delta(13)C increased at low light, it did so similarly in both subtypes. This suggests that differences in leaf delta(13)C between the C(4) subtypes are not caused by photosynthetic isotope fractionation and leaf delta(13)C is not a good indicator of bundle sheath leakiness. Additionally, low carbonic anhydrase (CA) in C(4) grasses may influences Delta(13)C and should be considered when estimating the contribution of C(4) grasses to the global isotopic signature of atmospheric CO(2). It was found that measured Delta(18)O values were lower than those predicted from leaf CA activities and Delta(18)O was similar in all species measured. The Delta(18)O in these C(4) grasses is similar to low Delta(18)O previously measured in C(4) dicots which contain 2.5 times the leaf CA activity, suggesting that leaf CA activity is not a predictor of Delta(18)O in C(4) plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号