首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The distribution of the luminal carbonic anhydrase Cah3 associated with thylakoid membranes in the chloroplast and pyrenoid was studied in wild-type cells of Chlamydomonas reinhardtii and in its cia3 mutant deficient in the activity of the Cah3 protein. In addition, the effect of CO(2) concentration on fatty acid composition of photosynthetic membranes was examined in wild-type cells and in the cia3 mutant. In the cia3 mutant, the rate of growth was lower as compared to wild-type, especially in the cells grown at 0.03% CO(2). This might indicate a participation of thylakoid Cah3 in the CO(2)-concentrating mechanism (CCM) of chloroplast and reflect the dysfunction of the CCM in the cia3 mutant. In both strains, a decrease in the CO(2) concentration from 2% to 0.03% caused an increase in the content of polyunsaturated fatty acids in membrane lipids. At the same time, in the cia3 mutant, the increase in the majority of polyunsaturated fatty acids was less pronounced as compared to wild-type cells, whereas the amount of 16:4ω3 did not increase at all. Immunoelectron microscopy demonstrated that luminal Cah3 is mostly located in the thylakoid membranes that pass through the pyrenoid. In the cells of CCM-mutant, cia3, the Cah3 protein was much less abundant, and it was evenly distributed throughout the pyrenoid matrix. The results support our hypothesis that CO(2) might be generated from HCO(3)(-) by Cah3 in the thylakoid lumen with the following CO(2) diffusion into the pyrenoid, where the CO(2) fixing Rubisco is located. This ensures the maintenance of active photosynthesis under CO(2)-limiting conditions, and, as a result, the active growth of cells. The relationships between the induction of CCM and restructuring of the photosynthetic membranes, as well as the involvement of the Cah3 of the pyrenoid in these events, are discussed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   

3.
4.
羧酶体(Carboxysome)是高效的固碳微体,在CO2浓缩机制(CO2-concentrating mechanism,CCM)中发挥重要作用。在蓝藻及某些化能自养菌中,羧酶体作为类细胞器包裹1,5-二磷酸核酮糖羧化酶/加氧酶(RubisCO)和碳酸酐酶(Carbonic anhydrase,CA),它与无机碳转运蛋白共同在胞质中积累HCO3–,通过增加RubisCO周围的CO2浓度来提高固碳效率。随着羧酶体结构和功能的阐明,异源表达羧酶体已成功实现,并且已鉴定出编码羧酶体壳蛋白及内部组分的基因。首先简要介绍羧酶体的发现和种类,然后系统分析其结构及在CCM机制中的作用,并对其在代谢工程上的广阔应用前景进行了展望。  相似文献   

5.
When Chlamydomonas reinhardtii cells are transferred to limiting CO2, one response is the induction of a CO2-concentrating mechanism (CCM) with components that remain to be identified. Characterization of membrane-associated proteins induced by this transfer revealed that synthesis of the 21-kD protein (LIP-21) was regulated at the level of translatable message abundance and correlated well with the induction of CCM activity. Phase partitioning of LIP-21 and the previously characterized LIP-36 showed that both appeared to be peripherally associated with membranes, which limits their potential to function as transporters of inorganic carbon. Ultrastructural changes that occur when cells are transferred to limiting CO2 were also examined to help form a model for the CCM or other aspects of adaptation to limiting CO2. Changes were observed in vacuolization, starch distribution, and mitochondrial location. The mitochondria relocated from within the cup of the chloroplast to between the chloroplast envelope and the plasma membrane. In addition, immunogold labeling demonstrated that LIP-21 was localized specifically to the peripheral mitochondria. These data suggest that mitochondria, although not previously incorporated into models for the CCM, may play an important role in the cell's adaptation to limiting CO2.  相似文献   

6.
Summary The pyrenoid is a protein complex in the chloroplast stroma of eukaryotic algae. After the treatment with mercury chloride, pyrenoids were isolated by sucrose density gradient centrifugation from cell-wall less mutant cells, CW-15, as well as wild type cells, C-9, of unicellular green algaChlamydomonas reinhardtii. Pyrenoids were characterized as a fraction whose protein/chlorophyll ratio was very high, and also examined by Nomarski differential interference microscopy. Most of the components consisted of 55 kDa and 16 kDa polypeptides (11) which were immunologically identified as the large and small subunit of RuBisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) protein, respectively. Some minor polypeptides were also detected. Substantial amount of RuBisCO protein is present as a particulate form in the pyrenoid in addition to the soluble form in algal chloroplast stroma.Abbreviations BPB bromophenol blue - DAB 3,3-diaminobenzidine - DTT dithiothreitol - ELISA enzyme-linked immunosorbent assay - High-CO2 cells cells grown under air enriched with 4% CO2 - Low-CO2 cells cells grown under ordinary air (containing 0.04% CO2) - NP-40 nonionic detergent (Nonidet) P-40 - PAGE polyacrylamide gel electrophoresis - PAP peroxidase-antiperoxidase conjugate - RuBisCO ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - SDS sodium dodecylsulfate  相似文献   

7.
Most microalgae overcome the difficulty of acquiring inorganic carbon (Ci) in aquatic environments by inducing a CO2-concentrating mechanism (CCM). In the green alga Chlamydomonas reinhardtii, two distinct photosynthetic acclimation states have been described under CO2-limiting conditions (low-CO2 [LC] and very low-CO2 [VLC]). LC-inducible protein B (LCIB), structurally characterized as carbonic anhydrase, localizes in the chloroplast stroma under CO2-supplied and LC conditions. In VLC conditions, it migrates to aggregate around the pyrenoid, where the CO2-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase is enriched. Although the physiological importance of LCIB localization changes in the chloroplast has been shown, factors necessary for the localization changes remain uncertain. Here, we examined the effect of pH, light availability, photosynthetic electron flow, and protein synthesis on the localization changes, along with measuring Ci concentrations. LCIB dispersed or localized in the basal region of the chloroplast stroma at 8.3–15 µM CO2, whereas LCIB migrated toward the pyrenoid at 6.5 µM CO2. Furthermore, LCIB relocated toward the pyrenoid at 2.6–3.4 µM CO2, even in cells in the dark or treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea and cycloheximide in light. In contrast, in the mutant lacking CCM1, a master regulator of CCM, LCIB remained dispersed even at 4.3 µM CO2. Meanwhile, a simultaneous expression of LCIC, an interacting protein of LCIB, induced the localization of several speckled structures at the pyrenoid periphery. These results suggest that the localization changes of LCIB require LCIC and are controlled by CO2 concentration with ∼7 µM as the boundary.

Algal chloroplast proteins undergo localization changes in response to CO2 concentrations, reflecting their physiological function in survival under fluctuating CO2 environments.  相似文献   

8.
Diatoms stand out among other microalgae due to the high diversity of species-specific silica frustules whose components (valves and girdle bands) are formed within the cell in special organelles called silica deposition vesicles (SDVs). Research on cell structure and morphogenesis of frustule elements in diatoms of different taxonomic groups has been carried out since the 1950s but is still relevant today. Here, cytological features and valve morphogenesis in the freshwater raphid pennate diatom Encyonema ventricosum (Agardh) Grunow have been studied using light and transmission electron microscopy of cleaned frustules and ultrathin sections of cells, and scanning electron and atomic force microscopy of the frustule surface. Data have been obtained on chloroplast structure: the pyrenoid is spherical, penetrated by a lamella (a stack of two thylakoids); the girdle lamella consists of several short lamellae. The basic stages of frustule morphogenesis characteristic of raphid pennate diatoms have been traced, with the presence of cytoskeletal elements near SDVs being observed throughout this process. Degradation of the plasmalemma and silicalemma is shown to take place when the newly formed valve is released into the space between sister cells. The role of vesicular transport and exocytosis in the gliding of pennate diatoms is discussed.  相似文献   

9.
Many aquatic algae induce a CO2-concentrating mechanism (CCM) associated with active inorganic carbon transport to maintain high photosynthetic affinity using dissolved inorganic carbon even in low-CO2 (LC) conditions. In the green alga Chlamydomonas reinhardtii, a Ca2+-binding protein CAS was identified as a novel factor regulating the expression of CCM-related proteins including bicarbonate transporters. Although previous studies revealed that CAS associates with the thylakoid membrane and changes its localization in response to CO2 and light availability, its detailed localization in the chloroplast has not been examined in vivo. In this study, high-resolution fluorescence images of CAS fused with a Chlamydomonas-adapted fluorescence protein, Clover, were obtained by using a sensitive hybrid detector and an image deconvolution method. In high-CO2 (5% v/v) conditions, the fluorescence signals of Clover displayed a mesh-like structure in the chloroplast and part of the signals discontinuously overlapped with chlorophyll autofluorescence. The fluorescence signals gathered inside the pyrenoid as a distinct wheel-like structure at 2 h after transfer to LC-light condition, and then localized to the center of the pyrenoid at 12 h. These results suggest that CAS could move in the chloroplast along the thylakoid membrane in response to lowering CO2 and gather inside the pyrenoid during the operation of the CCM.  相似文献   

10.
Pyrenoid proteins and ribulose-1,5-bisphosphate carboxylase-oxygenase(RuBisCO) in the green alga Bryopsis maxima were purified tohigh degrees and their peptide compositions were studied bySDS-polyacrylamide gel electrophoresis. RuBisCO had a largesubunit of 50 kDa and a small one of 16 kDa. The apparent molecularweight of the purified RuBisCO was estimated as 460 kDa by gelfiltration. Pyrenoid proteins had two major polypeptides: 52kDa and 17 kDa. The peptide map of the 52 kDa pyrenoid polypeptidecoincided well with that of the large subunit of RuBisCO, stronglysuggesting that the major component of the pyrenoid of thisalga was RuBisCO. We attempted to survey the distribution ofRuBisCO in the chloroplasts. The results suggested that muchof the RuBisCO of Bryopsis maxima was localized in the pyrenoid.The pyrenoid also contained more than 10 minor polypeptidesnot found in the RuBisCO fraction. The minor polypeptides comprisedabout 15% of the total pyrenoid protein and differed from thepolypeptides of the thylakoid membranes and from those foundin the starch grains surrounding the pyrenoid. (Received February 3, 1984; Accepted July 21, 1984)  相似文献   

11.
12.
Many photosynthetic species have evolved CO2-concentrating mechanisms (CCMs) to improve the efficiency of CO2 assimilation by Rubisco and reduce the negative impacts of photorespiration. However, the majority of plants (i.e. C3 plants) lack an active CCM. Thus, engineering a functional heterologous CCM into important C3 crops, such as rice (Oryza sativa) and wheat (Triticum aestivum), has become a key strategic ambition to enhance yield potential. Here, we review recent advances in our understanding of the pyrenoid-based CCM in the model green alga Chlamydomonas reinhardtii and engineering progress in C3 plants. We also discuss recent modeling work that has provided insights into the potential advantages of Rubisco condensation within the pyrenoid and the energetic costs of the Chlamydomonas CCM, which, together, will help to better guide future engineering approaches. Key findings include the potential benefits of Rubisco condensation for carboxylation efficiency and the need for a diffusional barrier around the pyrenoid matrix. We discuss a minimal set of components for the CCM to function and that active bicarbonate import into the chloroplast stroma may not be necessary for a functional pyrenoid-based CCM in planta. Thus, the roadmap for building a pyrenoid-based CCM into plant chloroplasts to enhance the efficiency of photosynthesis now appears clearer with new challenges and opportunities.

Research on pyrenoid formation has led to key advances toward engineering an algal CO2-concentrating mechanism into C3 land plants, and a recent model predicts an optimized pathway for future work.  相似文献   

13.
A comparative study has been made of the photosynthetic physiological ecology and carbon isotope discrimination characteristics for modern-day bryophytes and closely related algal groups. Firstly, the extent of bryophyte distribution and diversification as compared with more advanced land plant groups is considered. Secondly, measurements of instantaneous carbon isotope discrimination (Delta), photosynthetic CO(2) assimilation and electron transport rates were compared during the drying cycles. The extent of surface diffusion limitation (when wetted), internal conductance and water use efficiency (WUE) at optimal tissue water content (TWC) were derived for liverworts and a hornwort from contrasting habitats and with differing degrees of thallus ventilation (as intra-thalline cavities and internal airspaces). We also explore how the operation of a biophysical carbon-concentrating mechanism (CCM) tempers isotope discrimination characteristics in two other hornworts, as well as the green algae Coleochaete orbicularis and Chlamydomonas reinhardtii. The magnitude of Delta was compared for each life form over a drying curve and used to derive the surface liquid-phase conductance (when wetted) and internal conductance (at optimal TWC). The magnitude of external and internal conductances, and WUE, was higher for ventilated, compared with non-ventilated, liverworts and hornworts, but the values were similar within each group, suggesting that both factors have been optimized for each life form. For the hornworts, leakiness of the CCM was highest for Megaceros vincentianus and C. orbicularis (approx. 30%) and, at 5%, lowest in C. reinhardtii grown under ambient CO2 concentrations. Finally, evidence for the operation of a CCM in algae and hornworts is considered in terms of the probable role of the chloroplast pyrenoid, as the origins, structure and function of this enigmatic organelle are explored during the evolution of land plants.  相似文献   

14.
The CO2-concentrating mechanism (CCM) was induced in the green unicellular alga Chlorella when cells were transferred from high (5% CO2) to low (0.03%) CO2 concentrations. The induction of the CCM correlated with the formation of a starch sheath specifically around the pyrenoid in the chloroplast. With the aim of clarifying whether the starch sheath was involved in the operation of the CCM, we isolated and physiologically characterized a starchless mutant of Chlorella pyrenoidosa, designated as IAA-36. The mutant strain grew as vigorously as the wild type under high and low CO2 concentrations, continuous light and a 12 h light/12 h dark photoperiod. The CO2 requirement for half-maximal rates of photosynthesis [K0.5(CO2)] decreased from 40 μM to 2–3 μM of CO2 when both wild type and mutant were switched from high to low CO2. The high affinity for inorganic carbon indicates that the IAA-36 mutant is able to induce a fully active CCM. Since the mutant does not have the pyrenoid starch sheath, we conclude that the sheath is not involved in the operation of the CCM in Chlorella cells.  相似文献   

15.
16.
Intracellular carbonic anhydrases (CA) in aquatic photosynthetic organisms are involved in the CO2-concentrating mechanism (CCM), which helps to overcome CO2 limitation in the environment. In the green alga Chlamydomonas reinhardtii, this CCM is initiated and maintained by the pH gradient created across the chloroplast thylakoid membranes by photosystem (PS) II-mediated electron transport. We show here that photosynthesis is stimulated by a novel, intracellular alpha-CA bound to the chloroplast thylakoids. It is associated with PSII on the lumenal side of the thylakoid membranes. We demonstrate that PSII in association with this lumenal CA operates to provide an ample flux of CO2 for carboxylation.  相似文献   

17.
The pyrenoid is a prominent proteinaceous structure found in the stroma of the chloroplast in unicellular eukaryotic algae, most multicellular algae, and some hornworts. The pyrenoid contains the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase and is sometimes surrounded by a carbohydrate sheath. We have observed in the unicellular green alga Chlamydomonas reinhardtii Dangeard that the pyrenoid starch sheath is formed rapidly in response to a decrease in the CO2 concentration in the environment. This formation of the starch sheath occurs coincidentally with the induction of the CO2-concentrating mechanism. Pyrenoid starch-sheath formation is partly inhibited by the presence of acetate in the growth medium under light and low-CO2 conditions. These growth conditions also partly inhibit the induction of the CO2-concentrating mechanism. When cells are grown with acetate in the dark, the CO2-concentrating mechanism is not induced and the pyrenoid starch sheath is not formed even though there is a large accumulation of starch in the chloroplast stroma. These observations indicate that pyrenoid starch-sheath formation correlates with induction of the CO2-concentrating mechanism under low-CO2 conditions. We suggest that this ultrastructural reorganization under lowCO2 conditions plays a role in the CO2-concentrating mechanism C. reinhardtii as well as in other eukaryotic algae.  相似文献   

18.
Prior analysis of inorganic carbon (Ci) fluxes in the diatom Phaeodactylum tricornutum has indicated that transport of Ci into the chloroplast from the cytoplasm is the major Ci flux in the cell and the primary driving force for the CO2 concentrating mechanism (CCM). This flux drives the accumulation of Ci in the chloroplast stroma and generates a CO2 deficit in the cytoplasm, inducing CO2 influx into the cell. Here, the “chloroplast pump” model of the CCM in P. tricornutum is formalized and its consistency with data on CO2 and HCO3 ? uptake rates, carbonic anhydrase (CA) activity, intracellular Ci concentration, intracellular pH, and RubisCO characteristics is assessed. The chloroplast pump model can account for the major features of the data. Analysis of photosynthetic and Ci uptake rates as a function of external Ci concentration shows that the model has the most difficulty obtaining sufficiently low cytoplasmic CO2 concentrations to support observed CO2 uptake rates at low external Ci concentrations and achieving high rates of photosynthesis. There are multiple ways in which model parameters can be varied, within a plausible range, to match measured rates of photosynthesis and CO2 uptake. To increase CO2 uptake rates, CA activity can be increased, kinetic characteristics of the putative chloroplast pump can be enhanced to increase HCO3 ? export, or the cytoplasmic pH can be raised. To increase the photosynthetic rate, the permeability of the pyrenoid to CO2 can be reduced or RubisCO content can be increased.  相似文献   

19.
A significant portion of the total carbon fixed in the biosphere is attributed to the autotrophic metabolism of prokaryotes. In cyanobacteria and many chemolithoautotrophic bacteria, CO(2) fixation is catalyzed by ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), most if not all of which is packaged in protein microcompartments called carboxysomes. These structures play an integral role in a cellular CO(2)-concentrating mechanism and are essential components for autotrophic growth. Here we report that the carboxysomal shell protein, CsoS3, from Halothiobacillus neapolitanus is a novel carbonic anhydrase (epsilon-class CA) that has an evolutionary lineage distinct from those previously recognized in animals, plants, and other prokaryotes. Functional CAs encoded by csoS3 homologues were also identified in the cyanobacteria Prochlorococcus sp. and Synechococcus sp., which dominate the oligotrophic oceans and are major contributors to primary productivity. The location of the carboxysomal CA in the shell suggests that it could supply the active sites of RuBisCO in the carboxysome with the high concentrations of CO(2) necessary for optimal RuBisCO activity and efficient carbon fixation in these prokaryotes, which are important contributors to the global carbon cycle.  相似文献   

20.
The unicellular green alga Chlamydomonas reinhardtii acclimates to low-CO2 (LC) conditions by actively transporting inorganic carbon (Ci) into the cell, resulting in an increase in photosynthetic efficiency. This mechanism is called the carbon-concentrating mechanism (CCM), and soluble protein LCIB is essential for the CCM. LCIB is localized in the vicinity of pyrenoid, a prominent structure in the chloroplast, under LC conditions in the light. In contrast, in the dark or in high-CO2 conditions, where the CCM is inactive, LCIB diffuses away from the pyrenoid. Although the functional importance of LCIB for the CCM has been shown, the significance and mechanism of the change in suborganellar localization of LCIB remain to be elucidated. In this study, we screened 13,000 DNA-tagged mutants and isolated twelve aberrant LCIB localization (abl) mutants under LC conditions. abl-1 and abl-3 with dispersed and speckled localization of LCIB in the chloroplast showed significant decreases in Ci affinity, Ci accumulation, and CO2 fixation. Ten abl mutants (abl-1, abl-3, abl-4, abl-5, abl-6, abl-7, abl-8, abl-9, abl-11, and abl-12) showed not only aberrant LCIB localization but also reduced pyrenoid sizes. Moreover, three abl mutants (abl-10, abl-11, and abl-12) showed the increased numbers of pyrenoids per cell. These results suggested that the specific LCIB localization could be related to pyrenoid development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号