首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There were no lymphatic vessels and lymph nodes demonstrable in adult and larval Rana catesbeiana by a method that adequately demonstrated the same in mammals. Although the parenchymal arrangement in the lymphomyeloid organs is not exactly the same as in mammalian hemal nodes, nonetheless the vascular patterns of the lymph glands and jugular bodies are prima facie evidence that they function as blood-filtering organs among other probable functions. The vascular pattern of the lymph gland is that of a rete mirabile, particularly a venous portal system, inasmuch as the afferent and efferent vessels are venous in character and interposed between them is a labyrinth of sinusoids. This is not the case, though, in the adult organs. The vascular pattern of the jugular bodies is very much like the spleen, viz., artery-capillary-sinusoid-vein sequence. It is doubtful, however, if the propericardial and procoracoid bodies ever filter blood, because the smallest blood vessels in them are capillary in type Because of the absence of a well-defined capsule in some parts of the propericardial body, similarly to lymphoid follicles, especially in the mammalian gastrointestinal tract, it is probable that it filters tissue fluid. The last two organs are apparently mainly blood cell-forming organs. It is inferred from the vascular connections of the larval and the adult lymphomyeloid organs that they are not genetically related. This aspect was analyzed from earlier developmental data, but actual follow-up of the larval organs to the adult stage is still in progress.  相似文献   

2.
A histological study was undertaken of the differentiation of the lymphomyeloid complex of larvae of the common leopard frog, Rana pipiens, reared at 18–21 °C. Immature lymphocytes are first recognised in the thymus and pronephros at stage I of Taylor and Kollros ('46). By the end of stage II, small lymphocytes are regularly found among the predominant larger lymphoid cells in the thymus, in which corticomedullary differentiation has begun. At this time, a few small lymphocytes are also apparent in the ventral cavity bodies, lymph gland, pronephros, mesonephros and intestine, but rarely occur in the spleen. During stages III and IV extensive development of these components of the lymphomyeloid complex occurs. The organs now contain large numbers of mature lymphocytes and have attained states of differentiation that remain essentially similar in subsequent larval stages. By stage V, small epithelium-associated lymphoid accumulations are abundant throughout the length of the gastrointestinal tract. The anlagen of the procoracoid body and bone marrow appear just prior to metamorphosis. The kidneys are the main sites of blood formation in the larva. Masses of granulocytes are also usually found in the abundant ventral cavity bodies. A consideration of the roles of each of the organs provides insight into the ontogeny of the immune system of the Anura in general.  相似文献   

3.
Abstract The structure of the anterior end of three ontogenetically successive stages of Nectonema munidae (Nematomorpha) is investigated by light and transmission electron microscopy. During development, an adult cuticle is formed under a larval cuticle, which is subsequently moulted. Only one moult can be documented for Nectonema. The brain has a main subpharyngeal portion and a weak suprapharyngeal commissure. It is circumpharyngeal only in early developmental stages, the dorsal commissure is reduced in the adult stage. Four giant cells and a cerebral cavity are adult features. Although the morphology of the giant cells is elucidated, their function remains unclear, but a sensory function is probable. A septum marks the posterior border of the anterior end and divides a cerebral cavity from a body cavity. A precursor of the septum is present in the first stage observed, but it lies next to the epidermis and does not separate a cerebral cavity. Cuticular structures in the pre-pharyngeal region of the early stages are interpreted as remnants of the larval boring organ. They are moulted together with the larval cuticle. The morphology of the pharynx and the anterior part of the intestine is shown.  相似文献   

4.
The development of the free-swimming veliger of Amphibola is followed from hatching to settlement, and the larval structures compared with those of post-metamorphic juveniles and adult snails. Observations of living specimens and light-microscope sections were combined with scanning electron microscopy to build up a composite picture of veliger structure.
Four stages in the development of veligers are recognized, each being characterized by the appearance of organ systems such as the mantle cavity, larval heart, adult heart and kidney, and larval pallial gland. At or after metamorphosis, the larval systems (heart, kidney and pallial gland) disappear, and the developing adult organs move to the positions characteristic of adult snails.
Organogenesis in Amphibola veligers is compared with that of prosobranch and opisthobranch larvae, and with that of pulmonate larvae with direct development. The closest similarity is seen to be with opisthobranch veligers.  相似文献   

5.
The microscopic anatomy and ultrastructure of the body cavity and adjacent organs in the sea spider Nymphon brevirostre Hodge, 1863 (Pycnogonida, Nymphonidae) were examined by transmission electron microscopy. The longitudinal septa subdividing the body cavity are described: (1) Dohrn’s horizontal septum, (2) lateral heart walls, and (3) paired ventral septa consisting of separate cellular bands. The body cavity is a hemocoel, it has no epithelial lining and is only bordered by a basal lamina. The epidermis, heart, and Dohrn’s septum are not separated from each other by basal laminae and may have a common origin. The cellular bands forming the longitudinal ventral septa are not covered with the basal lamina and presumably derive from cells belonging to the hemocoel. The roles of the morphological structures studied for the circulation of hemolymph are discussed. The gonad lies inside Dohrn’s septum, it is covered with its own basal lamina and surrounded by numerous lacunae of the hemocoel entering the septum. The gonad wall is formed with a single layer of epithelium. The same epithelial cells form the gonad stroma. The gonad cavity is not lined with the basal lamina; muscle cells are present in the gonad wall epithelium, thus rendering the lumen similar to a coelomic cavity. Freely circulating cells of two types are found in the hemocoel: small amebocytes containing electronic-dense granules that are similar to granulocytes of other arthropods, as well as hemocytes with large vacuoles of varying structure that are comparable with plasmatocytes; however some of these may be activated granulocytes.  相似文献   

6.
An anatomical and ultrastructural investigation of the ventral pharyngeal organ, jaws and replacement of jaws was carried out in Ophryotrocha gracilis and Protodorvillea kefersteini (Dorvilleidae). The pharynx exhibits the following features: jaw apparatus present, consisting of paired mandibles and rows of maxillary plates, the latter are fused to form a single piece; cuticular jaws electron-dense, in P. kefersteini with collagen fibres; muscle bulbus solid, composed of muscle cells only; parallel running myofilaments, centrally located mitochondria and nuclei, bulbus epithelium containing the mandibles and gland cells, maxillary plates lying on folds corresponding to a tongue-like organ, connected with mandibles by longitudinal investing muscles; numerous gland cells not united to distinct salivary glands. Development of jaw replacements occurs in epithelial cavities beside the functional maxillae. Shape of maxillary plates is preformed by microvilli carrying cell processes. Maxilloblasts change their shape during the development. Synapomorphic structures occurring in ventral pharyngeal organs of other species outside the Eunicea are not present and even the closely related Dinophilidae exhibit a completely different pharyngeal organ. Therefore, convergent evolution of these organs is the most probable explanation. These findings do not agree with the hypothesis of the homology of the ventral pharyngeal organs in the Polychaeta.  相似文献   

7.
The salivary gland of adult Calliphora erythrocephala is a tubular structure composed of secretory, reabsorptive, and duct regions. Development of these structures has been followed during the six days of larval and ten days of pupal growth. Two small groups of imaginal cells located at the junction between larval gland and duct give rise to the adult gland. These presumptive adult cells divide during all larval stages and appear to be functional components of the larval gland. Shortly after pupation, the larval gland breaks down and the imaginal cells proliferate rapidly, forming sequentially the duct, reabsorptive and secretory regions. Proliferating regions of the developing gland are frequently encrusted with haemocytes. As it elongates the gland establishes intimate contacts first with the basement membrane of the degenerating larval gland, later with an epithelial layer surrounding the main dorsal tracheal trunks, and then with the gut. Cell division continues until about five days after pupation, bu t the gland is unable to secrete fluid in response to 5-hydroxytryptamine stimulation until two hours after the adult fly emerges. The Golgi complex appears to be involved in forming the highly folded membranes of the canaliculi in the secretory region. Presumptive adult salivary gland cells appear to increase in number logarithmically from the time of hatching of the larva until five days after pupation. This contrasts with the development of classical imaginal discs, in which cell division ceases prior to pupation.  相似文献   

8.
We have analyzed morphological changes affecting the lympho-hemopoietic organs of the anadromous sea lamprey, Petromyzon marinus throughout its life span. For this analysis, ammocoetes (2–4 years), premetamorphosing lampreys (nearly 5 years), metamorphosing lampreys, macrophtalmia stages (young adults) and parasitic adults (nearly 7 years) were used. The principal lympho-hemopoietic organs in the ammocoete are typhlosole, larval opisthonephros and nephros-associated adipose tissue. After metamorphosis, these organs degenerate, and their lympho-hemopoietic tissue is replaced by dense connective tissue. The supraneural body and to a lesser degree, the definitive opisthonephros, are the main blood-forming organs in adult lampreys. During larval life, lympho-hemopoietic cells appear in the branchial area, associated with pharyngeal epithelium. These loci are not morphologically homologous to the thymus gland of jawed vertebrates. These results are discussed, with special emphasis on the importance of cell microenvironments in eluciding changes in different blood-forming loci throughout the life cycle and their significance for the lamprey's immune capacity.  相似文献   

9.
Subpopulations of Kenyon cells, the intrinsic neurons of the insect mushroom bodies, are typically sequentially generated by dedicated neuroblasts that begin proliferating during embryogenesis. When present, Class III Kenyon cells are thought to be the first born population of neurons by virtue of the location of their cell somata, farthest from the position of the mushroom body neuroblasts. In the adult tobacco hornworm moth Manduca sexta, the axons of Class III Kenyon cells form a separate Y tract and dorsal and ventral lobelet; surprisingly, these distinctive structures are absent from the larval Manduca mushroom bodies. BrdU labeling and immunohistochemical staining reveal that Class III Kenyon cells are in fact born in the mid-larval through adult stages. The peripheral position of their cell bodies is due to their genesis from two previously undescribed protocerebral neuroblasts distinct from the mushroom body neuroblasts that generate the other Kenyon cell types. These findings challenge the notion that all Kenyon cells are produced solely by the mushroom body neuroblasts, and may explain why Class III Kenyon cells are found sporadically across the insects, suggesting that when present, they may arise through de novo recruitment of neuroblasts outside of the mushroom bodies. In addition, lifelong neurogenesis by both the Class III neuroblasts and the mushroom body neuroblasts was observed, raising the possibility that adult neurogenesis may play a role in mushroom body function in Manduca.  相似文献   

10.
In polypterus the mesodermal cavities appear quite late during embryonic life. They are generally small and they only get somewhat more voluminous in the anterior mesomeres (where they establish the pronephrie chambers) and in the ventral anterior mesoderm (where they become an embryonic pericardial cavity). The anlage of the heart appears in the anterior part of the tissue that is situated between the paired mesodermal cavities of these stages. It assumes some unawaited dispositions that are truly confusing in the case of a superficial inspection. It is only during larval life that a coelomic cavity appears all along the truncal part of the mesoderm. In the beginning this is a pericardio-peritoneal cavity. But because of the coalescence between several membranes an anterior cavity gets isolated and this one is the pericardial cavity of the adult specimens; this cavity is much more limited than its homonymic counterpart of the embryonic stages.  相似文献   

11.
Abstract The gonochoristic syllid Petitia amphophthalma is one of the truly interstitial polychaetes. P. amphophthalma does not show any epitokous modifications at maturity such as those that usually occur in syllids. The reproductive structures are unique: the male genital organs consist of a seminal vesicle in chaetigers 6–10, subdivided into a dorsal part tightly filled with spermatozoa and a ventral part with contents in different stages of spermatogenesis, one pair of sperm ducts and conspicuous gland cells situated in chaetigers 10 and 11. Their glandular secretions are discharged into the sperm duct together with those of other types of gland cells that form the duct. The oocytes develop freely within the body cavity of the females. Each of the fertile segments possesses a paired oviduct ending in a large ciliated funnel. Sperm ducts and oviducts are probably modifications of excretory organs; nephridia are absent in segments where gonoducts occur. A direct sperm transfer by lytic opening of the integument of the female and internal fertilization are inferred. Copyright © 1996 Published by Elsevier Science Ltd on behalf of the Royal Swedish Academy of Sciences  相似文献   

12.
13.
Electron microscopy was used to follow the transformation of the endostyle to a thyroid gland in the anadromous sea lamprey, Petromyzon marinus L., throughout metamorphosis (stages 1–7). Transformation of the larval (ammocoete) endostyle begins at the first signs of external change (stages 1–2), and the adult form of the gland is reached by stage 5. Only slight modifications of the gland accompany further development to the end of metamorphosis. Development of the thyroid gland involves degeneration, proliferation, and reorganization of the cells in the endostyle, and changes in their fine structure. Ultrastructural changes during early stages are most obvious in the type 1 cells that make up the shrinking glandular tracts, and involves the accumulation of cytoplasmic microfilaments and a variety of cytoplasmic inclusions. The glandular tracts and their cells gradually disappear through autolysis and, apparently, through phagocytosis by neighboring epithelial cells and macrophages. Although the fine structure of the type 2, 3, 4, and 5 cells is not altered in the early stages, by stage 3, many of these cells become either vacuolated, undergo autolysis, or are extruded. Phagocytosis of some of each of these cell types likely occurs. Thyroid follicles are first observed during stage 4. Some of their lumina seem to arise from the accumulation of material in intercellular spaces and from vacuoles among cell clusters. Other lumina may represent a portion of the original lumen of the endostyle. Many follicles appear to be comprised of cells with cytological characteristics similar to those of larval cell types 3 and 2c. Some of the other larval cell types, such as type 5, may also be involved. In young adult lampreys follicles are composed of cuboidal to columnar cells that lack the dilated cisternae of rough endoplasmic reticulum seen in follicular cells of higher vertebrates. Dense collagenous connective tissue surrounding the follicles contains relatively few blood vessels. The transformation process described may have some relevance to our understanding of the development and evolution of the vertebrate thyroid gland.  相似文献   

14.
The anatomy and innervation of the lateral external muscle and sensory cells located in the ventral region of pregenital abdominal segments were examined at the larval and adult stages ofTenebrio molitor (Coleoptera). All seven muscles located in this region degenerate during the pupal stage, whilst only the lateral external median (lem) appears in the adult. Backfillings of the motor nerve innervating this muscle reveal that, at both larval and adult stages, it is innervated by ten neurons. Intracellular records from the muscle fibres show that two neurons are inhibitory, and at least five are excitatory. There are also two unpaired neurons. A variety of sensory organs are located in the ventral region of the larvae, whilst only campaniform sensilla are found in the adult. At both stages, the innervation pattern of the sensory nerve branches is very similar. Also, the central projections of the sensory cells occupy similar neuropilar areas. Finally, prolonged intracellular records from the lem muscle revealed that, at the larval stage, it participates only in segmental or intersegmental reflexes, whilst in the adult it has a primary expiratory role in ventilation. The results show that extensive changes occur in the number of muscles located in the ventral region of the pregenital abdominal segments, as well as in the arrangement and number of sensory neurons, in the structure of the exoskeleton, and even in the central nervous system. In contrast, only minor changes are observed in the sensory and motor nerve branches, in the sensory projections, and in the number and the location of the motoneurons innervating the lateral external median muscle. Correspondence to: G. Theophilidis  相似文献   

15.
16.
In larval sea lampreys (Petromyzon marinus), a small, relatively inconspicuous olfactory organ sac contains small, densely packed olfactory receptor neurons and sustentacular cells. During metamorphosis, the larval organ transforms into a prominent lamellar structure with large distinct olfactory epithelial cells that is characteristic of the adult lamprey. In the present study, scanning electron microscopy and light microscopy are used to examine changes during the seven stages (1–7) of metamorphosis. The magnitude of growth over the course of metamorphosis is evident from the doubling of the relative weight of the nasal sac. During early metamorphosis (stages 1 and 2), the larval olfactory organ enlarges, and by stage 3 specific adult structures begin to form, namely a nasal valve between the nasal tube and the organ, lamellar folds, and diverticuli of the accessory olfactory organ. Subsequent development involves widening of the cells lining the lamellar folds to the form characteristic of postmetamorphic lampreys. Although the cells in the troughs initially retain numerical density values that are significantly higher than those on the lamellar surfaces, by stage 7 values decline both in troughs and along lamellar surfaces to those observed in adults. These results show that although expansion of the olfactory organ is ongoing throughout metamorphosis, remodeling occurs early (by stage 3). This timing provides space for extensive olfactory receptor neuron neurogenesis and differentiation and correlates with the transformation of some organs that were previously examined. This is the first report in any species of olfactory receptor neuron zonation based on morphometric characteristics. J. Morphol. 231:41–52, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
The structure of the olfactory organ in larvae and adults of the basal anuran Ascaphus truei was examined using light micrography, electron micrography, and resin casts of the nasal cavity. The larval olfactory organ consists of nonsensory anterior and posterior nasal tubes connected to a large, main olfactory cavity containing olfactory epithelium; the vomeronasal organ is a ventrolateral diverticulum of this cavity. A small patch of olfactory epithelium (the “epithelial band”) also is present in the preoral buccal cavity, anterolateral to the choana. The main olfactory epithelium and epithelial band have both microvillar and ciliated receptor cells, and both microvillar and ciliated supporting cells. The epithelial band also contains secretory ciliated supporting cells. The vomeronasal epithelium contains only microvillar receptor cells. After metamorphosis, the adult olfactory organ is divided into the three typical anuran olfactory chambers: the principal, middle, and inferior cavities. The anterior part of the principal cavity contains a “larval type” epithelium that has both microvillar and ciliated receptor cells and both microvillar and ciliated supporting cells, whereas the posterior part is lined with an “adult‐type” epithelium that has only ciliated receptor cells and microvillar supporting cells. The middle cavity is nonsensory. The vomeronasal epithelium of the inferior cavity resembles that of larvae but is distinguished by a novel type of microvillar cell. The presence of two distinct types of olfactory epithelium in the principal cavity of adult A. truei is unique among previously described anuran olfactory organs. A comparative review suggests that the anterior olfactory epithelium is homologous with the “recessus olfactorius” of other anurans and with the accessory nasal cavity of pipids and functions to detect water‐borne odorants. J. Morphol. 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

18.
An ontogenetic analysis of the olfactory organ and the number and distribution of internal taste buds was carried out in two neon gobies (Elacatinus lori and Elacatinus colini) with the goal of revealing morphological trends that might inform an understanding of the roles of olfaction and taste in larval orientation behaviour. The pattern of development of the olfactory organ is unremarkable and enclosure of the olfactory epithelium occurs concurrently with metamorphosis and settlement in both species. Like other gobies, juvenile and adult E. lori and E. colini lack complex olfactory lamellae, and lack the accessory nasal sacs present in some adult gobies that could facilitate active olfactory ventilation (i.e., sniffing). A small number of internal taste buds are present at hatch with most found in the caudal region of the buccal cavity (on gill arches, roof of buccal cavity). As taste bud number increases, they demonstrate an anterior spread to the lips, buccal valves and tongue (i.e., tissue covering the basihyal). In the absence of an active ventilatory mechanism for the olfactory organs, the water that moves through the buccal cavity with cyclic gill ventilation may provide chemical cues allowing the internal taste buds to play a role in chemical-mediated orientation and reef-seeking behavior in pelagic larval fishes.  相似文献   

19.
Cycliophora is a recently described phylum of enigmatic metazoans with a very complex life cycle that includes several sexual and asexual stages. Symbion pandora and Symbion americanus are the only two cycliophoran species hitherto described, of which morphological and genetic knowledge is still deficient to clarify the phylogenetic position of the phylum. Aiming to increase the database on the cycliophoran neural architecture, we investigated serotonin immunoreactivity in the free swimming Pandora larva, the Prometheus larva, and the adult dwarf male of S. americanus. In the larval forms, serotonin is mainly expressed in a ring-shaped pattern at the periphery of the antero-dorsal cerebral ganglion. Additionally, several serotonergic perikarya emerge from both sides of the cerebral ganglion. Thin neurites project anteriorly from the cerebral ganglion, while a pair of ventral longitudinal neurites emerges laterally and runs along the anterior-posterior body axis. Posteriorly, the ventral neurites fuse and extend as a posterior projection. In the dwarf male, serotonin is found mainly in the commissural neuropil of the large anterior cerebral ganglion. In addition, serotonin immunoreactivity is present in the most anterior region of the ventral neurites. Comparative analysis of spiralian nervous systems demonstrates that the neuroanatomy of the cycliophoran larval stages resembles much more the situation of adult rather than larval spiralians, which may be explained by secondary loss of larval structures and heterochronic shift of adult components into the nervous system of the Pandora and the Prometheus larva, respectively.  相似文献   

20.
The organization of the body cavity lining in selected regions of the juvenile and adult of the interstitial hesionid polychaete Microphthalmus cf. listensis is described. Tissues comprising the body cavity lining in the juvenile consist of somatic and splanchnic circular and longitudinal muscles and undifferentiated cells. Somatic and splanchnic cell layers exhibit epithelial ( = eucoelomate) organization in the pharyngeal region. In the midbody, some undifferentiated cells exhibiting mesenchymal organization persist among the epithelially organized somatic and splanchnic cells, forming a gradation between eucoelomate and acoelomate tissue organizations. A coelomic cavity is absent. Tissues comprising the body cavity lining of the adult consist of somatic and splanchnic circular and longitudinal myocytes and coelenchymal cells. Coelenchymal cells are shown from serial section analysis to be mesenchymal in organization and derived from the somatic peritoneum. A 30–65-nm coelomic cavity lies between the apices of somatic and splanchnic cell layers in the pharyngeal region. In the anterior setigerous segments, the coelom is reduced to a narrow cavity surrounded by coelenchymal cells lying midventrally between the paired ejaculatory ducts. There is a regional obliteration of the splanchnic musculature in the posterior segments so that apices of the coelenchymal cells lie in direct apposition to the basal extracellular matrix of the gut. The coeom is only present middorsally as a 0.7-μm-wide cavity. Although the coelomic cavity is highly reduced in the adult, the body cavity lining still reveals its origin from the epithelial ( = eucoelomate) organization. The findings of this study illustrate possible organizational intermediates in the evolution of the acoelomate from the eucoelomate condition in annelids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号