首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In the mammalian ovary, FGF10 is expressed in oocytes and theca cells and is a candidate for paracrine signaling to the developing granulosa cells. To gain insight into the participation of FGF10 in the regulation of fetal folliculogenesis, we assessed mRNA expression patterns of FGF10 and its receptors, FGFR1B and FGFR2B, in relation to fetal follicle dynamics and localized FGF10 protein in bovine fetal ovaries at different ages. Primordial, primary, secondary, and antral follicles were first observed on Days 75, 90, 150, and 210 of gestation, respectively. The levels of GDF9 and BMP15 mRNA, markers for primordial and primary follicles, respectively, increased during fetal ovary development in a consistent manner with fetal follicle dynamics. CYP17A1 mRNA abundance increased from Day 60 to Day 75 and then from Day 120 to Day 150, coinciding with the appearance of secondary follicles. FGF10 mRNA abundance increased from Day 90, and this increase was temporally associated with increases in FGFR1B mRNA abundance and in the population of primary follicles. In contrast, FGFR2B mRNA expression was highest on Day 60 and decreased thereafter. FGF10 protein was localized to oogonia and oocytes and surrounding granulosa cells at all fetal ages. The present data suggest a role for FGF10 in the control of fetal folliculogenesis in cattle.  相似文献   

4.
Although fibroblast growth factor 2 (FGF2) and fibroblast growth factor receptor 3 (FGFR3) both inhibit longitudinal bone growth, little is known about the relationship between FGF2 and FGFR3. Accordingly, the current study examined the expression of FGFR3 mRNA after the administration of FGF2 using cultured chondrocytes from day 17 chick embryos to evaluate the relationship between FGF2 and FGFR3. The chondrocytes were isolated from the caudal one-third portion (LS) of sterna, peripheral regions (USP) and central core regions (USC) of the cephalic portion of the sterna, and lower portion of the proximal tibial growth plate (Ti) of day 17 chick embryo. The expression of FGFR1, FGFR3, and type II and X collagen mRNA in the chondrocytes from the LS, USP, USC, and Ti was determined. FGFR1 was not expressed in the LS and USP chondrocytes, yet strongly expressed in the USC and Ti chondrocytes. With a treatment of FGF2, the expression of FGFR1 slightly increased in the USC chondrocytes and was not related with the concentration of FGF2 in the Ti chondrocytes. FGFR3 was expressed in all the chondrocyte types, yet strongly increased in the LS, USC, USP, and Ti in that order according to the concentration of FGF2. For the LS and USP chondrocytes, the expression of FGFR3 with FGF2 increased in a 4-day culture, yet decreased in a 6-day culture, whereas for the USC chondrocytes, the expression of FGFR3 mRNA with FGF2 increased in a 2-day culture, yet decreased in a 4-day culture, suggesting that the hypertrophic chondrocytes were more numerous and sensitive compared to the proliferative chondrocytes. For all the chondrocyte types, FGF2 appeared to be up-regulated to FGFR3, as the expression of FGFR3 mRNA increased with a higher concentration of FGF2 until a peak level. In conclusion, FGF2 was found to up-regulate to FGFR3 until the peak level of FGFR3 mRNA expression, while in hypertrophic chondrocytes, FGFR3 appeared to cause the differentiaton of chondrocytes, resulting in the inhibition of longitudinal bone growth after the peak level of FGFR3 mRNA expression.  相似文献   

5.
6.
7.

OBJECTIVE:

The Objective of this study was to identify the association of mutation of fibroblast growth factor receptor 1 (FGFR1), FGFR2 genes with syndromic as well as non-syndromic craniosynostosis in Indian population.

MATERIALS AND METHODS:

Retrospective analysis of our records from January 2008 to December 2012 was done. A total of 41 cases satisfying the inclusion criteria and 51 controls were taken for the study. A total volume of 3 ml blood from the patient as well as parents was taken. Deoxyribonucleic acid extracted using phenol chloroform extraction method followed by polymerase chain reaction-restriction fragment length polymorphism method.

RESULTS:

There were 33 (80.4%) non-syndromic cases of craniosynostosis while 8 (19.5%) were syndromic. Out of these 8 syndromic cases, 4 were Apert syndrome, 3 were Crouzon syndrome and 1 Pfeiffer syndrome. Phenotypically the most common non-syndromic craniosynostosis was scaphocephaly (19, 57.7%) followed by plagiocephaly in (14, 42.3%). FGFR1 mutation (Pro252Arg) was seen in 1 (2.4%) case of non-syndromic craniosynostosis while no association was noted either with FGFR1 or with FGFR2 mutation in syndromic cases. None of the control group showed any mutation.

CONCLUSION:

Our study proposed that FGFR1, FGFR2 mutation, which confers predisposition to craniosynostosis does not exist in Indian population when compared to the western world.  相似文献   

8.
9.
10.
Human fibroblast growth factor receptor (FGFR) is responsible for multifunctional signaling that regulates developmental processes. The three immunoglobulin-like extracellular domains of FGFR (D1, D2, and D3) include the determinants of ligand binding and specificity for fibroblast growth factor and heparan sulfate. D1 and the D1-D2 linker with a contiguous stretch of acidic amino acids are known to be involved in auto-inhibitory regulation. In an effort to gain a better understanding of the role of D1 and the linker in FGFR regulation, we have subcloned, overexpressed, and purified the extracellular fragments, D1-D2 and D1-D3, of FGFR1 in Escherichia coli. The recombinant proteins were produced in an insoluble form and were renatured using a dropwise or on-column refolding method. In addition, D2-D3 was coexpressed with chaperones to test the possibility that the presence of chaperones might enhance refolding efficiencies. A combination of immobilized nickel and heparin affinity chromatography and size-exclusion chromatography resulted in the purification of recombinant ectodomain proteins D1-D2 and D1-D3 of high purity for structural studies.  相似文献   

11.
The neural cell adhesion molecule (NCAM) directly interacts with the fibroblast growth factor receptor (FGFR). Both fibronectin type III (FN3) modules of NCAM are involved in this interaction. One of the NCAM–FGFR contact sites has been localized recently to the upper N-terminal part of the second NCAM FN3 module encompassing the F and G β-strands and the interconnecting loop region. Here, we investigated whether any of the six putative strand-loop-strand regions in the first NCAM FN3 module are involved in FGFR interactions. Peptide sequences encompassing these regions, termed encamins, were synthesized and tested for their ability to bind and activate FGFR. Encamins localized to the N-terminal part of the first FN3 module did not interact with FGFR, whereas encamins localized to the C-terminal part, termed EncaminA, C and E, bound to and activated FGFR. The encamins induced FGFR-dependent neurite outgrowth, and EncaminC and E promoted neuronal survival and enhanced pre-synaptic function. In conclusion, the interaction between NCAM and FGFR probably involves multiple contact sites at an interface formed by the two NCAM FN3 modules and FGFR, and encamins could constitute important pharmacological tools for the study of specific functional aspects of NCAM, including neuroprotection and modulation of plasticity.  相似文献   

12.
Expression of the cysteine-rich fibroblast growth factor (FGF) receptor (CFR) in COS-1 cells strongly inhibits the secretion of co-expressed FGF3. By using a column retention assay and affinity chromatography, we demonstrate that at physiological salt concentrations FGF3 binds with strong affinity to CFR in vivo and in vitro. Furthermore, to show that FGF3 binds to CFR in vivo, truncation mutants of CFR with changed subcellular distributions were shown to cause a similar redistribution of FGF3. Although CFR is a 150-kDa integral membrane glycoprotein that is primarily located in the Golgi apparatus, we show here that in COS-1 cells a substantial proportion of CFR is secreted. This is due to a carboxyl-terminal proteolytic cleavage that releases the intraluminal portion of the protein for secretion. However, the apparent size of the integral membrane and secreted CFR appears similar, since the loss of protein mass is balanced by a gain of complex carbohydrates. The released CFR is associated with the extracellular matrix through its affinity for glycosaminoglycans. These findings show that CFR can modulate the secretion of FGF3 and may control its biological activity by regulating its secretion.  相似文献   

13.
Brain-derived neurotrophic factor (BDNF) promotes neuronal survival. Gaining an understanding of how BDNF, via the tropomyosin-related kinase B (TRKB) receptor, elicits specific cellular responses is of contemporary interest. Expression of mutant TrkB in fibroblasts, where tyrosine 484 was changed to phenylalanine, abrogated Shc association with TrkB, but only attenuated and did not block BDNF-induced phosphorylation of mitogen-activated protein kinase (MAPK). This suggests there is another BDNF-induced signaling mechanism for activating MAPK, which compelled a search for other TrkB substrates. BDNF induces phosphorylation of fibroblast growth factor receptor substrate 2 (FRS2) in both fibroblasts engineered to express TrkB and human neuroblastoma (NB) cells that naturally express TrkB. Additionally, BDNF induces phosphorylation of FRS2 in primary cultures of cortical neurons, thus showing that FRS2 is a physiologically relevant substrate of TrkB. Data are presented demonstrating that BDNF induces association of FRS2 with growth factor receptor-binding protein 2 (GRB2) in cortical neurons, fibroblasts, and NB cells, which in turn could activate the RAS/MAPK pathway. This is not dependent on Shc, since BDNF does not induce association of Shc and FRS2. Finally, the experiments suggest that FRS2 and suc-associated neurotrophic factor-induced tyrosine-phosphorylated target are the same protein.  相似文献   

14.
15.
Fibroblast growth factors (FGFs) are a family of heparin-binding growth factors. FGFs exert their pro-angiogenic activity by interacting with various endothelial cell surface receptors, including tyrosine kinase receptors, heparan-sulfate proteoglycans, and integrins. Their activity is modulated by a variety of free and extracellular matrix-associated molecules. Also, the cross-talk among FGFs, vascular endothelial growth factors (VEGFs), and inflammatory cytokines/chemokines may play a role in the modulation of blood vessel growth in different pathological conditions, including cancer. Indeed, several experimental evidences point to a role for FGFs in tumor growth and angiogenesis. This review will focus on the relevance of the FGF/FGF receptor system in adult angiogenesis and its contribution to tumor vascularization.  相似文献   

16.
17.
18.
Epidermal growth factor: the receptor and its function   总被引:2,自引:0,他引:2  
Epidermal growth factor (EGF) is a small polypeptide hormone with mitogenic properties in vivo and in vitro. EGF elicits biologic responses by binding to a cell surface receptor which is a transmembrane glycoprotein containing a cytoplasmic protein tyrosine kinase. EGF responses are mediated by ligand binding and activation of this intrinsic protein kinase. The receptor can be phosphorylated by other protein kinases, and this may regulate receptor function. Stimulation of the receptor tyrosine kinase activity by ligand binding must regulate the activity of an as yet undefined molecule(s) responsible for transmitting a mitogenic signal to the nucleus.  相似文献   

19.
A chimeric molecule consisting of the extracellular domain of the adhesion molecule, N-cadherin, fused to the Fc region of human IgG (NCAD-Fc) supports calcium-dependent cell adhesion and promotes neurite outgrowth following affinity-capture to a tissue culture substrate. When presented to cerebellar neurons as a soluble molecule, the NCAD-Fc stimulated neurite outgrowth in a manner equivalent to that seen for N-cadherin expressed as a cell surface glycoprotein. Neurons expressing a dominant-negative version of the fibroblast growth factor (FGF) receptor did not respond to soluble NCAD-Fc. In cells transfected with full-length N-cadherin and the FGF receptor, antibody-clustering of N-cadherin resulted in a co-clustering of the FGF receptor to discrete patches in the cell membrane. The data demonstrate that the ability of N-cadherin to stimulate neurite outgrowth can be dissociated from its ability to function as a substrate associated adhesion molecule. The N-cadherin and the FGF receptor co-clustering in cells provides a basis for the neurite outgrowth response stimulated by N-cadherin being dependent on FGF receptor function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号