首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gram-negative bacterium Xanthomonas campestris pv. vesicatoria is the causal agent of spot disease in tomato and pepper. Plants of the tomato line Hawaii 7981 are resistant to race T3 of X. campestris pv. vesicatoria expressing the type III effector protein AvrXv3 and develop a typical hypersensitive response upon bacterial challenge. A combination of suppression subtractive hybridization and microarray analysis identified a large set of cDNAs that are induced or repressed during the resistance response of Hawaii 7981 plants to X. campestris pv. vesicatoria T3 bacteria. Sequence analysis of the isolated cDNAs revealed that they correspond to 426 nonredundant genes, which were designated as XRE (Xanthomonas-regulated) genes and were classified into more than 20 functional classes. The largest functional groups contain genes involved in defense, stress responses, protein synthesis, signaling, and photosynthesis. Analysis of XRE expression kinetics during the tomato resistance response to X. campestris pv. vesicatoria T3 revealed six clusters of genes with coordinate expression. In addition, by using isogenic X. campestris pv. vesicatoria T2 strains differing only by the avrXv3 avirulence gene, we found that 77% of the identified XRE genes were directly modulated by expression of the AvrXv3 effector protein. Interestingly, 64% of the XRE genes were also induced in tomato during an incompatible interaction with an avirulent strain of Pseudomonas syringae pv. tomato. The identification and expression analysis of X. campestris pv. vesicatoria T3-modulated genes, which may be involved in the control or in the execution of plant defense responses, set the stage for the dissection of signaling and cellular responses activated in tomato plants during the onset of spot disease resistance.  相似文献   

2.
3.
4.
5.
Hwang IS  Kim NH  Choi du S  Hwang BK 《Planta》2012,236(4):1191-1204
Recognition of bacterial effector proteins by plant cells is crucial for plant disease and defense response signaling. The Xanthomonas campestris pv. vesicatoria (Xcv) type III effector protein, AvrBsT, is secreted into plant cells from Xcv strain Bv5-4a. Here, we demonstrate that dexamethasone (DEX): avrBsT overexpression triggers cell death signaling in healthy transgenic Arabidopsis plants. AvrBsT overexpression in Arabidopsis also reduced susceptibility to infection with the obligate biotrophic oomycete Hyaloperonospora arabidopsidis. Overexpression of avrBsT significantly induced some defense-related genes in Arabidopsis leaves. A high-throughput in planta proteomics screen identified TCP-1 chaperonin, SEC7-like guanine nucleotide exchange protein and calmodulin-like protein, which were differentially expressed in DEX:avrBsT-overexpression (OX) Arabidopsis plants during Hp. arabidopsidis infection. Treatment with purified GST-tagged AvrBsT proteins distinctly inhibited the growth and sporulation of Hp. arabidopsidis on Arabdiopsis cotyledons. In contrast, DEX:avrBsT-OX plants exhibited enhanced susceptibility to Pseudomonas syringae pv. tomato (Pst) DC3000 infection. Notably, susceptible cell death and enhanced electrolyte leakage were significantly induced in the Pst-infected leaves of DEX:avrBsT-OX plants. Together, these results suggest that Xcv effector AvrBsT overexpression triggers plant cell death, disease and defense signaling leading to both disease and defense responses to microbial pathogens of different lifestyles.  相似文献   

6.
Protein-protein interactions in pathogen recognition by plants   总被引:3,自引:0,他引:3  
Protein-protein interactions have emerged as key determinants of whether plant encounters with pathogens result in disease or successful plant defense. Genetic interactions between plant resistance genes and pathogen avirulence genes enable pathogen recognition by plants and activate plant defense. These gene-for-gene interactions in some cases have been shown to involve direct interactions of the products of the genes, and have indicated plant intracellular localization for certain avirulence proteins. Incomplete specificity of some of the interactions in laboratory assays suggests that additional proteins might be required to confer specificity in the plant. In many cases, resistance and avirulence protein interactions have not been demonstrable, and in some cases, other plant components that interact with avirulence proteins have been found. Investigation to date has relied heavily on biochemical and cytological methods including in vitrobinding assays and immunoprecipitation, as well as genetic tools such as the yeast two-hybrid system. Observations so far, however, point to the likely requirement for multiple, interdependent protein associations in pathogen recognition, for which these techniques can be insufficient. This article reviews the protein-protein interactions that have been described in pathogen recognition by plants, and provides examples of how rapid future progress will hinge on the adoption of new and developing technologies.  相似文献   

7.
AvrPto and AvrPtoB are type III effector proteins expressed by Pseudomonas syringae pv. tomato strain DC3000, a pathogen of both tomato and Arabidopsis spp. Each effector physically interacts with the tomato Pto kinase and elicits a hypersensitive response when expressed in tomato leaves containing Pto. An avrPto deletion mutant of DC3000 previously was shown to retain avirulence activity on Pto-expressing tomato plants. We developed an avrPtoB deletion mutant of DC3000 and found that it also retains Pto-specific avirulence on tomato. These observations suggested that avrPto and avrPtoB both contribute to avirulence. To test this hypothesis, we developed an deltaavrPtodeltaavrPtoB double mutant in DC3000. This double mutant was able to cause disease on a Pto-expressing tomato line. Thus, avrPto and avrPtoB are the only avirulence genes in DC3000 that elicit Pto-mediated defense responses in tomato. When inoculated onto susceptible tomato leaves and compared with wild-type DC3000, the mutants DC3000deltaavrPto and DC3000deltaavrPtoB each caused slightly less severe disease symptoms, although their growth rate was unaffected. However, DC3000deltaavr PtodeltaavrPtoB caused even less severe disease symptoms than the single mutants and grew more slowly than them on susceptible leaves. Our results indicate that AvrPto and AvrPtoB have phenotypically redundant avirulence activity on Pto-expressing tomato and additive virulence activities on susceptible tomato plants.  相似文献   

8.
Protein phosphorylation/dephosphorylation plays critical roles in stress responses in plants. This report presents a comparative characterization of the serine/threonine PP2A catalytic subunit family in Solanum tuberosum (potato) and S. lycopersicum (tomato), two important food crops of the Solanaceae family, based on the sequence analysis and expression profiles in response to environmental stress. Sequence homology analysis revealed six isoforms in potato and five in tomato clustered into two subfamilies (I and II). The data presented in this work show that the expression of different PP2Ac genes is regulated in response to environmental stresses in potato and tomato plants and suggest that, in general, mainly members of the subfamily I are involved in stress responses in both species. However, the differences found in the expression profiles between potato and tomato suggest divergent roles of PP2A in the plant defense mechanisms against stress in these closely related species.  相似文献   

9.
Bacterial plant pathogens manipulate their hosts by injection of numerous effector proteins into host cells via type III secretion systems. Recognition of these effectors by the host plant leads to the induction of a defense reaction that often culminates in a hypersensitive response manifested as cell death. Genes encoding effector proteins can be exchanged between different strains of bacteria via horizontal transfer, and often individual strains are capable of infecting multiple hosts. Host plant species express diverse repertoires of resistance proteins that mediate direct or indirect recognition of bacterial effectors. As a result, plants and their bacterial pathogens should be considered as two extensive coevolving groups rather than as individual host species coevolving with single pathovars. To dissect the complexity of this coevolution, we cloned 171 effector-encoding genes from several pathovars of Pseudomonas and Ralstonia. We used Agrobacterium tumefaciens-mediated transient assays to test the ability of each effector to induce a necrotic phenotype on 59 plant genotypes belonging to four plant families, including numerous diverse accessions of lettuce (Lactuca sativa) and tomato (Solanum lycopersicum). Known defense-inducing effectors (avirulence factors) and their homologs commonly induced extensive necrosis in many different plant species. Nonhost species reacted to multiple effector proteins from an individual pathovar more frequently and more intensely than host species. Both homologous and sequence-unrelated effectors could elicit necrosis in a similar spectrum of plants, suggesting common effector targets or targeting of the same pathways in the plant cell.  相似文献   

10.
Significant progress has been made in elucidating the mechanisms used by plants to recognize pathogens and activate “immune” responses. A “first line” of defense can be triggered through recognition of conserved Pathogen or Microbe Associated Molecular Patterns (PAMPs or MAMPs), resulting in activation of basal (or non-host) plant defenses, referred to as PAMP-triggered immunity (PTI). Disease resistance responses can also subsequently be triggered via gene-for-gene type interactions between pathogen avirulence effector genes and plant disease resistance genes (Avr-R), giving rise to effector triggered immunity (ETI). The majority of the conceptual advances in understanding these systems have been made using model systems, such as Arabidopsis, tobacco, or tomato in combination with biotrophic pathogens that colonize living plant tissues. In contrast, how these disease resistance mechanisms interact with non-biotrophic (hemibiotrophic or necrotrophic) fungal pathogens that thrive on dying host tissue during successful infection, is less clear. Several lines of recent evidence have begun to suggest that these organisms may actually exploit components of plant immunity in order to infect, successfully colonize and reproduce within host tissues. One underlying mechanism for this strategy has been proposed, which has been referred to as effector triggered susceptibility (ETS). This review aims to highlight the complexity of interactions between plant recognition and defense activation towards non-biotrophic pathogens, with particular emphasis on three important fungal diseases of wheat (Triticum aestivum) leaves.  相似文献   

11.
Homologs of the Yersinia virulence factor YopJ are found in both animal and plant bacterial pathogens, as well as in plant symbionts. The conservation of this effector family indicates that several pathogens may use YopJ-like proteins to regulate bacteria-host interactions during infection. YopJ and YopJ-like proteins share structural homology with cysteine proteases and are hypothesized to functionally mimic small ubiquitin-like modifier (SUMO) proteases in eukaryotic cells. Strains of the phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria are known to possess four YopJ-like proteins, AvrXv4, AvrBsT, AvrRxv, and XopJ. In this work, we have characterized AvrXv4 to determine if AvrXv4 functions like a SUMO protease in planta during Xanthomonas-plant interactions. We provide evidence that X. campestris pv. vesicatoria secretes and translocates the AvrXv4 protein into plant cells during infection in a type III-dependent manner. Once inside the plant cell, AvrXv4 is localized to the plant cytoplasm. By performing AvrXv4 deletion and mutational analysis, we have identified amino acids required for type III delivery and for host recognition. We show that AvrXv4 recognition by resistant plants requires a functional protease catalytic core, the domain that is conserved in all of the putative YopJ-like cysteine proteases. We also show that AvrXv4 expression in planta leads to a reduction in SUMO-modified proteins, demonstrating that AvrXv4 possesses SUMO isopeptidase activity. Overall, our studies reveal that the YopJ-like effector AvrXv4 encodes a type III SUMO protease effector that is active in the cytoplasmic compartment of plant cells.  相似文献   

12.
Hwang IS  Hwang BK 《Plant physiology》2011,155(1):447-463
Plant mannose-binding lectins (MBLs) are crucial for plant defense signaling during pathogen attack by recognizing specific carbohydrates on pathogen surfaces. In this study, we isolated and functionally characterized a novel pepper (Capsicum annuum) MBL gene, CaMBL1, from pepper leaves infected with Xanthomonas campestris pv vesicatoria (Xcv). The CaMBL1 gene contains a predicted Galanthus nivalis agglutinin-related lectin domain responsible for the recognition of high-mannose N-glycans but lacks a middle S-locus glycoprotein domain and a carboxyl-terminal PAN-Apple domain. The CaMBL1 protein exhibits binding specificity for mannose and is mainly localized to the plasma membrane. Immunoblotting using a CaMBL1-specific antibody revealed that CaMBL1 is strongly expressed and accumulates in pepper leaves during avirulent Xcv infection. The transient expression of CaMBL1 induces the accumulation of salicylic acid (SA), the activation of defense-related genes, and the cell death phenotype in pepper. The G. nivalis agglutinin-related lectin domain of CaMBL1 is responsible for cell death induction. CaMBL1-silenced pepper plants are more susceptible to virulent or avirulent Xcv infection compared with unsilenced control plants, a phenotype that is accompanied by lowered reactive oxygen species accumulation, reduced expression of downstream SA target genes, and a concomitant decrease in SA accumulation. In contrast, CaMBL1 overexpression in Arabidopsis (Arabidopsis thaliana) confers enhanced resistance to Pseudomonas syringae pv tomato and Alternaria brassicicola infection. Together, these data suggest that CaMBL1 plays a key role in the regulation of plant cell death and defense responses through the induction of downstream defense-related genes and SA accumulation after the recognition of microbial pathogens.  相似文献   

13.
The type III effector protein AvrPto acts as a virulence factor in susceptible plants lacking a cognate resistance gene but triggers hypersensitive response and disease resistance in tomato plants carrying the Pto gene or in tobacco plants carrying an unknown resistance gene. To assist the characterization of cellular responses caused by AvrPto in the plant, a pathogen-free system was adopted to isolate genes up-regulated 12 h after induced expression of AvrPto. By using subtraction cloning and transgenic tobacco plants expressing avrPto as a transgene, we isolated 125 nonredundant cDNA clones that represent avrPto-response genes (ARG). In addition to genes that are known to be induced by Pto-avrPto recognition, a number of new genes were also isolated. Most of ARG showed a specific induction in tobacco plants challenged with incompatible or nonhost pathogens. The use of an avrPto mutant that selectively eliminated the avrPto recognition in tobacco demonstrated that the ARG were induced in a highly specific manner by the avirulence, instead of the virulence activity of avrPto.  相似文献   

14.
Pathogenicity of Xanthomonas campestris pathovar (pv.) vesicatoria and most other Gram-negative bacterial plant pathogens largely depends on a type III secretion (TTS) system which is encoded by hypersensitive response and pathogenicity (hrp) genes. These genes are induced in the plant and are essential for the bacterium to be virulent in susceptible hosts and for the induction of the hypersensitive response (HR) in resistant host and non-host plants. The TTS machinery secretes proteins into the extracellular milieu and effector proteins into the plant cell cytosol. In the plant, the effectors presumably interfere with cellular processes to the benefit of the pathogen or have an avirulence activity that betrays the bacterium to the plant surveillance system. Type III effectors were identified by their avirulence activity, co-regulation with the TTS system and homology to known effectors. A number of effector proteins are members of families, e.g., the AvrBs3 family in Xanthomonas. AvrBs3 localizes to the nucleus of the plant cell where it modulates plant gene expression. Another family that is also present in Xanthomonas is the YopJ/AvrRxv family. The latter proteins appear to act as SUMO cysteine proteases in the host. Here, we will present an overview about the regulation of the TTS system and its substrates and discuss the function of the AvrRxv and AvrBs3 family members in more detail.  相似文献   

15.
16.
17.
18.
Plant disease resistance (R) genes encode proteins that both determine recognition of specific pathogen-derived avirulence (Avr) proteins and initiate signal transduction pathways leading to complex defense responses. Recent developments suggest that recognition specificity of R proteins is determined by either a protein kinase domain or by a region consisting of leucine-rich repeats. R genes conferring resistance to bacterial, viral, and fungal pathogens appear to use multiple signaling pathways, some of which involve distinct proteins and others which converge upon common downstream effectors. Manipulation of R genes and their signaling pathways by transgenic expression is a promising strategy to improve disease resistance in plants.  相似文献   

19.
Recent studies on the interactions between plants and pathogenic microorganisms indicate that the processes of disease symptom development and pathogen growth can be uncoupled. Thus, in many instances, the symptoms associated with disease represent an active host response to the presence of a pathogen. These host responses are frequently mediated by phytohormones. For example, ethylene and salicylic acid (SA) mediate symptom development but do not influence bacterial growth in the interaction between tomato (Lycopersicon esculentum) and virulent Xanthomonas campestris pv vesicatoria (Xcv). It is not apparent why extensive tissue death is integral to a defense response if it does not have the effect of limiting pathogen proliferation. One possible function for this hormone-mediated response is to induce a systemic defense response. We therefore assessed the systemic responses of tomato to Xcv. SA- and ethylene-deficient transgenic lines were used to investigate the roles of these phytohormones in systemic signaling. Virulent and avirulent Xcv did induce a systemic response as evidenced by expression of defense-associated pathogenesis-related genes in an ethylene- and SA-dependent manner. This systemic response reduced cell death but not bacterial growth during subsequent challenge with virulent Xcv. This systemic acquired tolerance (SAT) consists of reduced tissue damage in response to secondary challenge with a virulent pathogen with no effect upon pathogen growth. SAT was associated with a rapid ethylene and pathogenesis-related gene induction upon challenge. SAT was also induced by infection with Pseudomonas syringae pv tomato. These data show that SAT resembles systemic acquired resistance without inhibition of pathogen growth.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号