首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
多趾是脊椎动物常见的肢体异常,在不同物种间具有相似的表型。研究表明,有相同的基因和发育机理控制不同物种间的多趾表型;最近在人和鼠上的研究进一步表明PPD应是由于干扰了位于Lmbr1内含子内的Shh长程顺式调控元件引起的。对脊椎动物多趾性状的发生机理和相关基因的研究进展进行了综述。Abstract: Polydactyly is a common abnormal limb phenotype in vertebrate and there is similar limb phenotype among different species. Research shows that polydactyly has a similar development mechanism, and this kind of polydactyly character seems to be controlled by homologous genes among species. The latest research results on human and mouse further shows that PPD should be caused by the disruption of a long range cis-acting regulator for Shh within Lmbr1 intron. Here the development mechanism and related genes controlling polydactyly character of vertebrate are reviewed.  相似文献   

2.
杨粤军  吴秀山  李敏 《遗传》2002,24(6):667-669
果蝇的早期心脏发育与脊椎动物的早期发育模式具有惊人的相似,所以果蝇成为研究脊椎动物心脏发育的模式动物,通过对其心脏发育基因的研究,可加速揭示人体心脏的发育机理。为进一步筛选并克隆出新的心脏发育基因,本实验采用经化学诱变的平衡致死系的果蝇,进行心脏特异性抗体染色,观察到10个致死系表现出心脏突变表型,并将已确定遗传学部位的6个品系缩小到更小区域。 Screening of the Genes in Controlling HeartDevelopment of Drosophila YANG Yue-jun,WU Xiu-shan,LI Min College of life sciences,Hunan Normal University,Changsha 410081,China Abstract:It is becoming increasingly evident that remarkable similaries of heart development are revealed in Drosophila and vertebrate,Therefore Drosophila can be used as a prototype to explore the vertebrate.This can in accelerate to revealing of the machanisms of human heart development.In order to screen and clone new genes that control the heart development,we have established the balanced-lethal lines by chemical mutagen and performed the heart-specific antibody.Ten of lines showed mutant phenotype,of which 6 were determined the smaller genetic sites for gene location. Key words:Drosophila; heart develop; genes  相似文献   

3.
Msx homeobox gene family and craniofacial development   总被引:9,自引:0,他引:9  
Alappat S  Zhang ZY  Chen YP 《Cell research》2003,13(6):429-442
Vertebrate Msx genes are unlinked, homeobox-containing genes that bear homology to the Drosophila muscle segment homeobox gene. These genes are expressed at multiple sites of tissue-tissue interactions during vertebrate embryonic development. Inductive interactions mediated by the Msx genes are essential for normal craniofacial, limb and ectodermal organ morphogenesis, and are also essential to survival in mice, as manifested by the phenotypic abnormalities shown in knockout mice and in humans. This review summarizes studies on the expression, regulation, and functional analysis of Msx genes that bear relevance to craniofacial development in humans and mice.  相似文献   

4.
C1q is the first subcomponent of classical pathway in the complement system and a major link between innate and acquired immunities. The globular (gC1q) domain similar with C1q was also found in many non-complement C1q-domain-containing (C1qDC) proteins which have similar crystal structure to that of the multifunctional tumor necrosis factor (TNF) ligand family, and also have diverse functions. In this study, we identified a total of 52 independent gene sequences encoding C1q-domain-containing proteins through comprehensive searches of zebrafish genome, cDNA and EST databases. In comparison to 31 orthologous genes in human and different numbers in other species, a significant selective pressure was suggested during vertebrate evolution. Domain organization of C1q-domain-containing (C1qDC) proteins mainly includes a leading signal peptide, a collagen-like region of variable length, and a C-terminal C1q domain. There are 11 highly conserved residues within the C1q domain, among which 2 are invariant within the zebrafish gene set. A more extensive database searches also revealed homologous C1qDC proteins in other vertebrates, invertebrates and even bacterium, but no homologous sequences for encoding C1qDC proteins were found in many species that have a more recent evolutionary history with zebrafish. Therefore, further studies on C1q-domain-containing genes among different species will help us understand evolutionary mechanism of innate and acquired immunities.  相似文献   

5.
6.
Luo JH  Yan J  Weng L  Yang J  Zhao Z  Chen JH  Hu XH  Luo D 《Cell research》2005,15(8):665-677
Recent studies on leaf development demonstrate that the mechanism on the adaxial-abaxial polarity pattern formation could be well conserved among the far-related species, in which PHANTASTICA (PAHN)-Iike genes play important roles. In this study, we explored the conservation and diversity on functions of PHAN-Iike genes during the compound leaf development in Lotusjaponicus, a papilionoid legume. Two PHAN-Iike genes in L. japonicus, LjPHANa and LjPHANb, were found to originate from a gene duplication event and displayed different expression patterns during compound leaf development. Two mutants, reduced leafletsl (rell) and reduced leaflets3 (rel3), which exhibited decreased adaxial identity of leaflets and reduced leaflet initiation, were identified and investigated. The expression patterns of both LjPHANs in rel mutants were altered and correlated with abnormalities of compound leaves. Our data suggest that LjPHANa and LjPHANb play important but divergent roles in regulating adaxial-abaxial polarity of compound leaves in L. japonicus.  相似文献   

7.
The thyroid hormones L-thyroxine and triiodo-Lthyronine have profound effects on postenbryonic development of most vertebrates.Analysis of their action in mammals is vitiated by the exposure of the developing foetus to a number of maternal factors which do not allow one to specifically define the role of thyroid hormone (TH) or that of other hormones and factors that modulate its action.Amphibian metamorphosis is obligatorily dependent on TH which can initiate all the diverse physiological manifestations of this postembryonic developmental process(morphogenesis,cell death,re-structuring,etc.) in free-living embryos and larvas of most anurans.This article will first describe the salient features of metamorphosis and its control by TH and other hormones.Emphasis will be laid on the key role played by TH receptor (TR),in particular the phenomenon of TR gene autoinduction,in initiating the developmental action of TH.Finally,it will be argued that the findings on the control of amphibian metamorphosis enhance our understanding of the regulation of postembryonic development by TH in other vertebrate species.  相似文献   

8.
吕学敏  邓廉夫  杨庆铭 《遗传》2004,26(2):231-234
脊椎动物胚胎期骨与关节系统的发生是一种复杂生命现象,起始于中胚层间充质细胞的定向聚集,形成肢芽,然后在一系列作用因子的调控下,肢芽内细胞进一步分化,形成具有骨骼雏形的软骨原基,后者经软骨内骨化发育成骨。四肢骨大多是以这种方式发生的,四肢的滑膜关节系统也随骨骼的发生而形成。详细阐述了近年来对肢体骨与关节系统发生各步骤相关调控机制方面的研究进展。Abstract: The embryonic development of bone and joint involves in complicated events for vertebrate limb. It originates from determined condensation of mesenchymal cells from lateral mesoderm. These cells and the overlying ectodermal jacket form limb buds at presumptive limb levels. Then, under the control of systemic factors, mesenchymal cells aggregate and differentiate to form catilage blastemal elements that prefigure skeletal limb components. The latter develops into skeleton through endochondral ossification. The majority of the bones of the limb form by the endochondral mechanism. The formation of synovial joint system and bone development occur simultaneously. This article reviewed the progress on the related control mechanism in the development of bone and joint recently.  相似文献   

9.
10.
Chloroplast development depends on the synthesis and import of a large number of nuclear-encoded pro- teins. The synthesis of some of these proteins is affected by the functional state of the plastid via a process known as retrograde signaling. Retrograde plastid-to-nucleus signaling has been often characterized in seedlings of Arabidopsis thaliana exposed to norflurazon (NF), an inhibitor of carotenoid biosynthesis. Results of this work suggested that, throughout seedling development, a factor is released from the plastid to the cytoplasm that indicates a perturbation of plastid homeostasis and represses nuclear genes required for normal chloroplast development. The identity of this factor is still under debate. Reactive oxygen species (ROS) were among the candidates discussed as possible retrograde signals in NF-treated plants. In the present work, this proposed role of ROS has been analyzed. In seedlings grown from the very beginning in the presence of NF, ROS-dependent signaling was not detectable, whereas, in seedlings first exposed to NF after light-dependent chloroplast formation had been completed, enhanced ROS production occurred and, among oth- ers, 1O2-mediated and EXECUTER-dependent retrograde signaling was induced. Hence, depending on the developmental stage at which plants are exposed to NF, different retrograde signaling pathways may be activated, some of which are also active in non-treated plants under light stress.  相似文献   

11.
Mouse mutants have been proven to be a valuable system to analyze the molecular network governing vertebrate limb development. In the present study, we report on the molecular and morphological consequences of the Fused toes (Ft) mutation on limb morphogenesis in homozygous embryos. We show that Ft affects all three axes as the mutant limbs display severe distal truncations of skeletal elements as well as an anteroposterior and an unusual form of dorsoventral polydactyly. Ectopic activation of the Shh signalling cascade in the distal-most mesoderm together with malformations of the AER likely account for these alterations. Moreover, we provide evidence that a deregulated control of programmed cell death triggered by Bmp-4 and Dkk-1 significantly contributes to the complex limb phenotype. In addition, our analysis reveals a specific requirement of the genes deleted by the Ft mutation in hindlimb morphogenesis.  相似文献   

12.
13.
14.
Limb development has become one of the model systems for studying vertebrate development. One crucial aspect in limb development is the origin, differentiation and patterning of muscle. Much progress has been made in recent years towards understanding this process. One of the general observations is that the genes involved in limb muscle development appear to be very similar to those involved in muscle development in other regions of the embryo. In this review, we summarize some of the genes and mechanisms that regulate limb muscle development and discuss various avenues along which a deeper understanding can be gained of how muscle cells originate and differentiate in different tissues during vertebrate development.  相似文献   

15.
Polydactyly is one of the most common hereditary congenital limb malformations in chickens and other vertebrates. The zone of polarizing activity regulatory sequence (ZRS) is critical for the development of polydactyly. The causative mutation of polydactyly in the Silkie chicken has been mapped to the ZRS; however, the causative mutations of other chicken breeds are yet to be established. To understand whether the same mutation decides the polydactyly phenotype in other chicken breeds, we detected the single-nucleotide polymorphism in 26 different chicken breeds, specifically, 24 Chinese indigenous breeds and 2 European breeds. The mutation was found to have fully penetrated chickens with polydactyly in China, indicating that it is causative for polydactyly in Chinese indigenous chickens. In comparison, the mutation showed no association with polydactyly in Houdan chickens, which originate from France, Europe. Based on the different morphology of polydactyly in Chinese and European breeds, we assumed that the trait might be attributable to different genetic foundations. Therefore, we subsequently performed genome-wide association analysis (GWAS) to locate the region associated with polydactyly. As a result, a ~0.39 Mb genomic region on GGA2p was identified. The region contains six candidate genes, with the causative mutation found in Chinese indigenous breeds also being located in this region. Our results demonstrate that polydactyly in chickens from China and Europe is caused by two independent mutation events that are closely located in the chicken genome.  相似文献   

16.
17.
18.
The potential of the vertebrate limb as a model system to study developmental mechanisms is particularly well illustrated by the analysis of the Hox gene network. These genes are probably involved in the establishment of patterns encoding positional information. Their functional organisation during both limb and trunk development are very similar and seem to involve the progressive activation in time, along the chromosome, of a battery of genes whose products could differentially instruct those cells where they are expressed. This process may be common to all organisms that develop according to an anterior-posterior morphogenetic progression. The possible linkage of this system to a particular mechanism of segmentation as well as its phylogenetic implications are discussed.  相似文献   

19.
Polydactyly is a common malformation of vertebrate limbs. In humans a major locus for nonsyndromic pre-axial polydactyly (PPD) has been mapped previously to 7q36. The mouse Hemimelic extra-toes (Hx) mutation maps to a homologous chromosome segment and has been proposed to affect a homologous gene. To understand the molecular changes underlying PPD, we used a positional cloning approach to identify the gene or genes disrupted by the Hx mutation and a closely linked limb mutation, Hammertoe (Hm). High resolution genetic mapping identified a small candidate interval for the mouse mutations located 1.2 cM distal to the Shh locus. The nonrecombinant interval was completely cloned in bacterial artificial chromosomes and searched for genes using a combination of exon trapping, sample sequencing, and mapping of known genes. Two novel genes, Lmbr1 and Lmbr2, are entirely within the candidate interval we defined genetically. The open reading frame of both genes is intact in mutant mice, but the expression of the Lmbr1 gene is dramatically altered in developing limbs of Hx mutant mice. The correspondence between the spatial and temporal changes in Lmbr1 expression and the embryonic onset of the Hx mutant phenotype suggests that the mouse Hx mutation may be a regulatory allele of Lmbr1. The human ortholog of Lmbr1 maps within the recently described interval for human PPD, strengthening the possibility that both mouse and human limb abnormalities are due to defects in the same highly conserved gene.  相似文献   

20.
Bone morphogenetic proteins `BMPs' are polypeptide signaling molecules, belonging to the TGF-β superfamily. They were originally identified by their ability to induce ectopic bone formation, but their expression patterns in embryos suggest multiple functions. BMP-7-deficient mice show among other mesodermal and skeletal patterning defects, polydactyly in the hindlimbs `Luo G, Hofmann C, Bronckers ALJJ, Sohocki M, Bradley A, Karsenty G `1995': Genes Dev 9:2808-2820; Dudley AT, Lyons KM, Robertson EJ `1995': Genes Dev 9:2795-2807'. Here we report a more detailed analysis of the limb phenotype in BMP-7-deficient mice using in situ hybridization to monitor expression of molecules implicated in patterning processes of the developing vertebrate limb. In previous studies we showed that Sonic hedgehog (Shh) was expressed normally, but Hoxd-13 expression in limb mesenchyme was lower in BMP-7 mutant limbs. Here we show that Hoxd-11 expression domains are also contracted and decreased in intensity in mutant limbs, suggesting that 5′ genes of the Hoxd cluster are coordinately downregulated, while another Bmp, Bmp-2, which can be activated by Shh, is similarly expressed. The mutant limb buds are broader than normal buds, and fibroblast growth factor Fgf-8 is expressed throughout the extended ridge. However, expression of the homeobox gene Msx-1, which has been shown to be involved in epithelial-mesenchymal interactions during limb development, was decreased in the mesenchyme of BMP-7 mutant limbs. Taken together, our data suggest that BMP-7 is involved in regulating proliferation and/or epithelial-mesenchymal interactions in the developing limb. © 1996 Wiley-Liss Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号