首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As part of an ongoing revision of the family Gonyleptidae, we have identified many species that are synonyms of previously described species or misplaced in this family. This article summarizes these findings, adding previously unavailable information or correcting imprecise observations to justify the presented taxonomic changes. The following new familial or subfamilial assignments are proposed: Nemastygnus Roewer, 1929 and Taulisa Roewer, 1956 are transferred to Agoristenidae, Agoristeninae; Napostygnus Roewer, 1929 to Cranaidae; Ceropachylinus peruvianus Roewer, 1956 and Pirunipygus Roewer, 1936 are transferred to Gonyleptidae, Ampycinae; Gyndesops Roewer, 1943, Haversia Roewer, 1913 and Oxapampeus Roewer, 1963 are transferred to Gonyleptidae, Pachylinae. The following generic synonymies are proposed for the family Gonyleptidae: Acanthogonyleptes Mello-Leitão, 1922 = Centroleptes Roewer, 1943; Acrographinotus Roewer, 1929 = Unduavius Roewer, 1929; Gonyleptes Kirby, 1819 = Collonychium Bertkau, 1880; Mischonyx Bertkau, 1880 = Eugonyleptes Roewer, 1913 and Gonazula Roewer, 1930; Parampheres Roewer, 1913 = Metapachyloides Roewer, 1917; Pseudopucrolia Roewer, 1912 = Meteusarcus Roewer, 1913; Haversia Roewer, 1913 = Hoggellula Roewer, 1930. The following specific synonymies are proposed for the family Gonyleptidae: Acanthogonyleptes singularis (Mello-Leitão, 1935) = Centroleptes flavus Roewer, 1943, syn. n.; Geraeocormobius sylvarum Holmberg, 1887 = Discocyrtus serrifemur Roewer, 1943, syn. n.; Gonyleptellus bimaculatus (Sørensen, 1884) = Gonyleptes cancellatus Roewer,1917, syn. n.; Gonyleptes atrus Mello-Leitão, 1923 = Weyhia brieni Giltay, 1928, syn. n.; Gonyleptes fragilis Mello-Leitão, 1923 = Gonyleptes banana Kury, 2003, syn. n.; Gonyleptes horridus Kirby, 1819 = Collonychium bicuspidatum Bertkau, 1880, syn. n., Gonyleptes borgmeyeri Mello-Leitão, 1932, syn. n., Gonyleptes curvicornis Mello-Leitão, 1932, syn. n., Metagonyleptes hamatus Roewer, 1913, syn. n. and Paragonyleptes simoni Roewer, 1930, syn. n.; Gonyleptes pustulatus Sørensen, 1884 = Gonyleptes guttatus Roewer, 1917, syn. n.; Haversia defensa (Butler, 1876) = Sadocus vallentini Hogg, 1913, syn. n.; Liogonyleptoides minensis (Piza, 1946) = Currala bahiensis Soares, 1972, syn. n.; Megapachylus grandis Roewer, 1913 = Metapachyloides almeidai Soares & Soares, 1946, syn. n.; Mischonyx cuspidatus (Roewer, 1913) = Gonazula gibbosa Roewer, 1930 syn. n.; Mischonyx scaber (Kirby, 1819) = Xundarava holacantha Mello-Leitão, 1927, syn. n.; Parampheres tibialis Roewer, 1917 = Metapachyloides rugosus Roewer, 1917, syn. n.; Parapachyloides uncinatus (Sørensen, 1879) = Goyazella armata Mello-Leitão, 1931, syn. n.; Pseudopucrolia mutica (Perty, 1833) = Meteusarcus armatus Roewer, 1913, syn. n. The following new combinations are proposed: Acrographinotus ornatus (Roewer, 1929), comb. n. (ex Unduavius); Gonyleptellus bimaculatus (Sørensen, 1884),comb. n. (ex Gonyleptes);Gonyleptes perlatus (Mello-Leitão, 1935), comb. n. (exMoojenia);Mischonyx scaber (Kirby, 1819), comb. n. (ex Gonyleptes); and Neopachyloides peruvianus (Roewer, 1956), comb. n. (ex Ceropachylus). The following species of Gonyleptidae, Gonyleptinae are revalidated: Gonyleptes atrus Mello-Leitão, 1923 and Gonyleptes curvicornis (Roewer, 1913).  相似文献   

2.
Scanning electron microscopy (SEM) is a useful tool for identifying interspecific variation in often overlooked structures that may represent useful sources for informative phylogenetic characters. In this study, we used SEM to compare the morphology of 12 cosmetid species from Central America, the Caribbean, and North America including multiple species for the genera Cynorta, Erginulus, and Paecilaema. To determine if microanatomical structures were unique to the cosmetid taxa under examination, we investigated the microanatomical structures of six additional species of gonyleptoidean harvestmen representing the families Agoristenidae, Cranaidae, Gonyleptidae, Manaosbiidae, and Stygnidae. Our results indicate that the shape of the ocularium (narrow, intermediate, or broad) did not vary within cosmetid genera, whereas the morphology of the rough pit glands on the eye mound varied considerably between species. Each cosmetid species had 10–20 rough pit glands on the ocularium whereas only the eye mounds of Avima intermedia (Agoristenidae) and Glysterus sp. (Gonyleptidae) had similar structures. With regards to the surface texture of the dorsal scutum, cosmetid harvestmen exhibited a rivulose‐microgranulate morphology (6 species), a microtuberculate‐rivulose‐microrgranulate morphology (4 species), or a microgranulate morphology (2 species). In contrast, each of the gonyleptoidean species exhibited a microgranulate pattern, with the exception of Stygnoplus clavotibialis, which had a rivulose‐microgranulate surface texture. For cosmetid harvestmen, we observed considerable interspecific variation in the shape and number of teeth on the fixed and moveable fingers of the male chelicerae. Similarly, we also observed interspecific variation in the distribution and shape of tubercles on the ventral and dorsal surfaces of the femur of the pedipalp. Overall, our results indicate that there are several microanatomical structures associated with the ocularium, dorsal scutum, male chelicera, and pedipalp that could represent informative phylogenetic characters in future taxonomic studies of cosmetid harvestmen. J. Morphol. 275:1386–1405, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
A new family of Laniatores, Gerdesiidae fam. nov., is proposed based on molecular and morphological evidence. Data also indicate that this new family is the sister family of Tricommatidae. Gerdesiidae fam. nov. has a disjunct distribution, occurring in northern South America (Peru, Brazilian Amazon) and at a spot in south‐eastern Brazil (Minas Gerais State). The new family is composed of two genera: Gerdesius Roewer, 1952 (type genus) and G onycranaus gen. nov. (type species G onycranaus androgynus sp. nov. ). We propose the synonymy of Huralvioides H. Soares, 1970 with Gerdesius Roewer, 1952 based on molecular and morphological evidence. Three new species are described: G erdesius mapinguari sp. nov. (type locality: Brazil, Amazonas, Manaus, Reserva Km 41); G onycranaus androgynus sp. nov. (type locality: Brazil, Minas Gerais, Conceição do Mato Dentro); and an obligate cave‐dwelling species, G onycranaus pluto sp. nov. (type locality: Brazil, Minas Gerais, Morro do Pilar). © 2015 The Linnean Society of London  相似文献   

4.
The southern Rocky Mountains and adjacent Intermontane Plateau Highlands region of western North America is a geographically diverse area with an active geologic history. Given the topological complexity and extensive geologic activity, organisms inhabiting this region are expected to show some degree of morphological and genetic divergence, especially populations found on the southern montane 'sky islands' of this region. Here we examine the phylogeographic history and diversification of a montane forest inhabiting harvestmen, Sclerobunus robustus, using a combination of genetic and morphological data. Divergence time estimates indicate that much of the diversification within and between major groups S. robustus predate the Pleistocene glacial cycles. The most widespread subspecies, Sclerobunus robustus robustus, is recovered as six genetically distinct, geographically cohesive mitochondrial phylogroups. Gene tree data for a single nuclear gene reveals congruent, albeit slightly more conservative, patterns of genetic divergence. Despite high levels of genetic divergence throughout their distribution, phylogroups show extreme conservation in somatic and reproductive morphology. This uncoupling of morphological and genetic differentiation may be due to morphological conservatism associated with a conserved microhabitat preference. Based on these data, it is obvious that S. robustus has undergone some level of cryptic diversification.  相似文献   

5.
6.
《Journal of morphology》2017,278(1):73-88
Previous studies of leg injuries in harvestmen have focused on the fitness consequences for individuals that use autospasy (voluntary detachment of the leg) as a secondary defense mechanism. Leg damage among non‐autotomizing species of laniatorean harvestmen has not been investigated. Under laboratory conditions, we damaged femur IV of Cynorta marginalis and observed with scanning electron microscopy (SEM) the changes in these wounds over ten days. We also used SEM to examine leg damage from individuals of three species of cosmetid harvestmen that were collected in the field. On the basis of changes in the external surface of the hemolymph coagulum, we classified these wounds as fresh (coagulum forming), recent (coagulum with smooth surface), older (coagulum is scale‐like with visible cell fragments), and fully healed (scale replaced by new cuticle growth on the terminal stump). Our observations indicate that wound healing in harvestmen occurs in a manner comparable to that of other chelicerates. Leg injuries exhibited interspecific variation with respect to the overall frequency of leg wounds and the specific legs that were most commonly damaged. In addition, we measured walking and climbing speeds of adult C . marginalis and found that individuals with fresh injuries (lab‐induced) to femur IV walked at speeds significantly slower than uninjured adults or individuals collected from the field that had fully healed wounds to a single leg. J. Morphol. 278:73–88, 2017. ©© 2016 Wiley Periodicals,Inc.  相似文献   

7.
Among the Opiliones, species of the suborders Cyphophthalmi, Eupnoi, Dyspnoi and Laniatores have shown very diverse diploid chromosome numbers. However, only certain Eupnoi species exhibit XY/XX and ZZ/ZW sex chromosome systems. Considering the scarcity of karyotypical information and the absence of structurally identifiable sex chromosomes in the suborder Laniatores, we decided to analyse the chromosomes and bivalents of Discocyrtus pectinifemur (Gonyleptidae) to identify possible sex differences. Testicular cells examined under light microscopy showed a high diploid number, 2 n  = 88, meta/submetacentric chromosome morphology and a nucleolar organizer region on pair 35. Prophase I microspreading observed in transmission electron microscopy exhibited 44 synaptonemal complexes with similar electron density and thickness. The total and regular synapsis between the chromosomes of the bivalents was also noted in pachytene nuclei. Male mitotic and meiotic chromosomes revealed no distinct characteristic that could be related to the occurrence of heteromorphic sex chromosomes. Evolutionary trends of chromosome differentiation in the four suborders of Opiliones are discussed here.  相似文献   

8.
In at least four closely related families of the diverse harvestmen lineage Gonyleptoidea, males may possess sexually dimorphic tarsal glands in the swollen tarsomeres of the basitarsus and/or metatarsus of leg I. The first histological and ultrastructural examination of the sexually dimorphic tarsal glands in leg I focused only on Manaosbiidae. In this study, we examine the morphology and ultrastructure of the sexually dimorphic glands, and their associated glandular openings, found in the basitarsus and/or metatarsus of leg I of males representing Cosmetidae, Gonyleptidae, and Cranaidae (glandular openings only). In cosmetids and gonyleptids, the tarsal glands are made up of 20–60 glandular units that form distinct groups within the prolateral and retrolateral half of the tarsomere. Each glandular unit consists of a pair of terminal secretory cells, an intercalary cell wrapped around the receiving canal, and a canal cell tightly wrapped around the length of the conducting canal. Cosmetidae, Gonyleptidae, and Cranaidae exhibit remarkably similar tarsal glands and gland openings although the location of the glands in the leg differs slightly among them. Males of these three families exhibit markedly different glands and glandular openings compared to males of the family Manaosbiidae. The sexually dimorphic tarsal glands may provide an important morphological character for determining phylogenetic relationships among gonyleptoid families. Finally, we provide morphological and ultrastructural data for the common tegumental glands. These data indicate that the sexually dimorphic tarsal glands are strikingly similar to, and may possibly be derived from, the tegumental glands. J. Morphol. 274:1203–1215, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
The external anatomy of the ovipositor has generally been overlooked as a source of informative characters in systematic studies of laniatorean harvestmen. In this study, we used scanning electron microscopy to examine the ovipositors of nine species representing the families Manaosbiidae (five species) and Nomoclastidae (four species). Similar to the ovipositor morphology of many gonyleptoidean families, the distal tips of the ovipositors of these harvestmen have four external lobes, with the margins most commonly adorned with 10 large peripheral setae. In manaosbiid and nomoclastid species, these peripheral setae have undivided bases, striated shafts and undivided distal tips. There are typically three setae on each anterior lobe and two setae on each posterior lobe. The medial setae on both anterior and posterior lobes insert into sockets that are slightly more dorsal. We observed small, surface denticles, usually associated with a pore, on the external surface of the lobes. There was interspecific and intraspecific variation in the number and shape of these surface denticles. The association of pores with denticles on the ovipositor appears to be a feature common to not only both families but is also a trait that has not been observed on ovipositors in other families of laniatorean harvestmen.  相似文献   

10.
Morphological changes during postembryonic development in the Cranaidae are described on the basis of the examination of an incomplete series of larvae, nymphs, and adults of Phareicranaus calcariferus and Santinezia serratotibialis. The life histories of these species are hypothesized to consist of six nymphal stages, featuring the appearance of secondary male sexual characteristics in the antepenultimate nymph (N5). Color and body shape change dramatically during development. Growth rates for nymphs based upon leg measurements were similar for both species. In S. serratotibialis, the greatest increase in leg size occurred from larva to 1st nymph. The tarsomeres of legs I–IV varied by 1–2 segments per leg for each nymph stage, with the number of tarsal segments increased by 1–2 segments at each stage. Adults had nearly twice as many tarsomeres on leg II than other legs. Ontogenetic changes were observed in the armature of the proximal cheliceral segment, ocularium, pedipalp, opisthosoma, distitarsus III and IV, and leg IV. Morphological changes in postembryonic development in cranaid harvestmen are similar to those reported for other Laniatores. J. Morphol., 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
In arachnids, pedipalps are highly variable appendages that may be used in feeding, courtship, defense, and agonistic encounters. In cosmetid harvestmen, adults have pedipalps that feature flattened femora, spoon‐shaped tibiae, and robust tarsal claws. In contrast, the pedipalps of nymphs are elongate with cylindrical podomeres and are adorned with delicate pretarsi. In this study, we used scanning electron microscopy to examine the distribution of cuticular structures (e.g., sensilla chaetica, pores) on the elements of the pedipalps of adults and nymphs of three species of cosmetid harvestmen. Our results indicate that there is considerable ontogenetic variation in the morphology of the trochanter, femur, patella, tibia, and tarsus. The pretarsus of the nymph has a ventral patch of setae that is absent from the adult tarsal claw. We observed this structure on all three cosmetid species as well as on the pedipalps of an additional seven morphospecies of nymphs collected in Belize and Costa Rica. This structure may represent a previously unrecognized autapomorphy for Cosmetidae. Examinations of the pedipalps of antepenultimate nymphs of additional gonyleptoidean harvestmen representing the families Ampycidae, Cranaidae, Manaosbiidae, and Stygnidae revealed the occurrence of unusual, plumose tarsal setae, but no setal patches on the tarsal claw.  相似文献   

12.
The ozopores of cosmetid harvestmen rest upon lateral projections of the carapace, have simple or highly reduced channels, and are partially obscured by enlarged dorsal processes associated with coxae I and II. Rather than use scent gland secretions to form a chemical shield on the dorsum, the cosmetid harvestman exhibits a unique defensive behavior known as “leg dabbing” in which the distal tip of tarsus I or II is dipped into fluid that accumulate at the base of coxa II and the droplet on the tarsus is pointed toward the predator. Relatively little is known about interspecific variation in ozopore morphology among cosmetid harvestmen. In this study, we used scanning electron microscopy to examine the ozopores of males and females of nine species as well as those of antepenultimate nymphs for two species. Among adults, we found differences between species in the shapes of the ozopores (round or subtriangular), the morphology of the dorsal and lateral channels (if present), and the relative size, shape and armature of the dorsal posterior process (dpp) of coxa I and the dorsal anterior process (dap) of coxa II. Our observations suggest that the morphology of dpp I and dap II could be sources for systematic characters in future phylogenetic studies of the Cosmetidae. We observed ontogenetic differences but relatively little intersexual variation in the morphology of the ozopore. The ozopores of nymphs are generally more oval than those of adults and the opening of the ozopore of the nymph is less obstructed, if at all, by the dorsal coxal processes of legs I–II. These morphological differences suggest that nymphs may use scent gland secretions in a manner different from that of adults.  相似文献   

13.
Arachnids of the order Opiliones (harvestmen), which includes around 6000 specìes, have a pair of scent glands that open at the sides of the body, producing substances used as defence. Several types of behavioural, morphological and chemical defensive mechanisms have been identified in the order as a whole, although some of these tactics were restricted to particular groups. Only around 60 species have been studied from this perspective so far, more than half of which belong to the largest harvestman family within the order Laniatores, the Gonyleptidae, and have only recently been studied in an evolutionary perspective, showing the usefulness of defensive characters in taxonomy and evolutionary biology. Within Laniatores, the Grassatores clade includes the Gonyleptidae and 20 additional families, mostly poorly or not previously studied. We describe the morphology of the structures involved in fluid displacement during chemical defence in 15 of these families (data on two additional families are available from the literature) and discuss the evolution of such traits based on an available phylogenetic hypothesis of relationships within Grassatores, using the representatives of Triaenonychidae (a non‐Grassatores family of Laniatores) for comparison. We conclude that most non‐gonyleptoid Grassatores share (maybe plesiomorphically) a series of characteristics, mostly strongly different from what is observed within the gonyleptoids, and that smaller groups seem to share diagnostic features related to chemical defence, as is the case of stygnids, cosmetids and triaenonychines, and especially of manaosbiids and cranaids, whose defensive morphologies largely resemble those of derived gonyleptids. The following main synapomorphies were detected: (a) Grassatores: the presence of a deep and well‐defined descending channel; (b) Samooidea+Zalmoxoidea+Assamioidea+Gonyleptoidea: lateral pegs along the lateral channel; (c) Samooidea+Zalmoxoidea: deep channels forming an H on the dorsal scute; (d) Gonyleptoidea: ozopore cutting dorsally (reversing in Agoristenidae and Stygnidae to a laterally placed oval ozopore), a wide and smooth lateral channel, reversing to a lateral channel whose bottom is covered with either small plates (Agoristenidae) or high tubercles (Stygnidae), and apophyses of coxa II close to or covering the ozopore.  相似文献   

14.
This is the first comprehensive study to evaluate the relationships between the western palearctic harvestman families Dicranolasmatidae, Trogulidae and Nemastomatidae with focus on the phylogeny and systematics of Trogulidae, using combined sequence data of the nuclear 28S rRNA and the mitochondrial cytochrome b gene. Bayesian analysis and Maximum parsimony do not reliably resolve Dicranolasma as distinct family but place it on a similar phylogenetic level as several lineages of Trogulidae. Nemastomatidae and Trogulidae turned out to be monophyletic, as did genera Anelasmocephalus and Trogulus within the Trogulidae. The genera Calathocratus, Platybessobius and Trogulocratus each appeared para or polyphyletic, respectively and are synonymized with Calathocratus. The monotypic genus Kofiniotis is well supported. We show molecular data to be in general concordance with taxa characterized by morphology. Molecular data are especially useful to calibrate morphological characters for systematic purposes within homogeneous taxa. In the majority of closely related valid species we show the lowest level of genetic distance to be not lower than 5%. By this threshold in terms of traditionally accepted species the estimated number of species turns out to be 1.5–2.4 times higher than previously believed. With respect to European fauna cryptic diversity in Trogulidae is obviously extraordinarily high and hitherto largely underestimated.  相似文献   

15.
16.
Harvestmen (Arachnida, Opiliones) are especially dependent on chemical cues and are often regarded as animals that rely mainly on contact chemoreception. Information on harvestman sensilla is scarce when compared to other arachnid orders, especially concerning internal morphology. Using scanning (SEM) and transmission (TEM) electron microscopy, we investigated tarsal sensilla on the distal tarsomeres (DT) of all leg pairs in Heteromitobates discolor (Laniatores, Gonyleptidae). Furthermore, we explored the typological diversity of sensilla present on the DT I and II in members of the suborder Laniatores, which include two thirds of the formally described opilionid fauna, using species from 17 families representing all main laniatorian lineages. Our data revealed that DT I and II of H. discolor are equipped with wall-pored falciform hairs (two types), wall-pored sensilla chaetica (two types) and tip-pored sensilla chaetica, while DT III and IV are mainly covered with trichomes (non-sensory) and tip-pored sensilla chaetica. The ultrastructural characteristics support an olfactory function for all wall-pored sensilla and a dual gustatory/mechanoreceptive function for tip-pored sensilla chaetica. Based on our comparative SEM survey, we show that wall-pored sensilla occur in all investigated Laniatores, demonstrating their widespread occurrence in the suborder and highlighting the importance of both legs I and II as the sensory appendages of laniatorean harvestmen. Our results provide the first morphological evidence for olfactory receptors in Laniatores and suggest that olfaction is more important for harvestmen than previously thought.  相似文献   

17.
A cladistic analysis of the genus Karos Goodnight & Goodnight, 1944, was performed using morphological data of the somatic and male genitalia characters. The analysis included 23 terminal taxa, including nine of the 11 described species of the genus plus nine new species according to the previous generic diagnosis and five species as outgroups. According to the topologies obtained by parsimony analyses, the genus is a paraphyletic assemblage, referred here as the Karos genus‐group. Therefore, the genus Karos is rediagnosed here and now includes seven species: Karos barbarikos Goodnight & Goodnight, 1944 (type), Karos parvus Goodnight & Goodnight, 1971, Karos projectus Goodnight & Goodnight, 1971, K aros hexasetosus sp. nov. , K aros monjarazi sp. nov. , K aros singularis sp. nov. , and K aros tersum sp. nov. The genera Monterella Goodnight & Goodnight, 1944, Montabunus Goodnight & Goodnight, 1945, Chapulobunus Goodnight & Goodnight, 1946, and Potosa Goodnight & Goodnight, 1947 are revalidated, rediagnosed, their respective type species are redescribed and the following species are described: Chapulobunus poblano sp. nov. and Potosa reddelli sp. nov. The genera Crettaros gen. nov. , Huasteca gen. nov. , and Mictlana gen. nov. , and the following species are described: Crettaros santibanezi sp. nov. (type), Crettaros valdezi sp. nov. , and Huasteca silhavyi sp. nov. The following new combinations are proposed: Huasteca gratiosa (Goodnight & Goodnight, 1971) comb. nov. (type), Huasteca rugosa (Goodnight & Goodnight, 1971) comb. nov. and Mictlana inops (Goodnight & Goodnight, 1971) comb. nov. (type). Karos brignolii ?ilhavý, 1974, is considered a junior synonym of Huasteca rugosa. Finally, ‘Karosdepressus Goodnight & Goodnight, 1971 is considered incertae sedis until adult males can be studied. Diagnoses of the Karos and Paramitraceras genus‐groups, and an identification key to the eight genera and 19 species of the former are provided. © 2015 The Linnean Society of London  相似文献   

18.
Sexually dimorphic glands often release sexual pheromones both in vertebrates and invertebrates. Species of Laniatores (Arachnida, Opiliones) seem to depend on chemical communication but few studies have addressed this topic. In this study, we review the literature for the Phalangida and present new data for 23 species of Laniatores. In 16 taxa, we found previously undescribed sexually dimorphic glandular openings on the femur, patella, metatarsus, and tarsus of legs I and metatarsus of legs III and IV. For the other species, we provide scanning electron micrographs of previously undescribed sexually dimorphic setae and pegs located on swollen regions of the legs. We also list additional species in which males have swollen regions on the legs, including the tibia, metatarsus, and tarsus of legs I, trochanter and tibia of legs II, femur, metatarsus, and tarsus of legs III, and metatarsus and tarsus of legs IV. The function and biological role of the secretions released by these glands are discussed. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
The monotypic genus Cryptomaster Briggs, 1969 was described based on individuals from a single locality in southwestern Oregon. The described species Cryptomaster leviathan Briggs, 1969 was named for its large body size compared to most travunioid Laniatores. However, as the generic name suggests, Cryptomaster are notoriously difficult to find, and few subsequent collections have been recorded for this genus. Here, we increase sampling of Cryptomaster to 15 localities, extending their known range from the Coast Range northeast to the western Cascade Mountains of southern Oregon. Phylogenetic analyses of mitochondrial and nuclear DNA sequence data reveal deep phylogenetic breaks consistent with independently evolving lineages. We use discovery and validation species delimitation approaches to generate and test species hypotheses, including a coalescent species delimitation method to test multi-species hypotheses. For delimited species, we use light microscopy and SEM to discover diagnostic morphological characters. Although Cryptomaster has a small geographic distribution, this taxon is consistent with other short-range endemics in having deep phylogenetic breaks indicative of species level divergences. Herein we describe Cryptomaster behemoth sp. n., and provide morphological diagnostic characters for identifying Cryptomaster leviathan and Cryptomaster behemoth.  相似文献   

20.
The arachnids of the order Opiliones (harvestmen) produce substances used in defense. In the present paper, we analyzed 22 species of Gonyleptidae to explore the use of defensive substances in taxonomy and evolutionary biology. Thirty-seven different compounds were detected, 18 of which were preliminarily identified. These compounds were mapped onto a phylogenetic tree showing the relationships within the Gonyleptidae. Data from Cosmetidae were used as an outgroup. Five ketones and six alkyl phenols were reported for the first time in harvestmen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号