首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
<正>代谢工程自1991年诞生以来,在改造植物、动物、微生物的代谢功能方面得到了广泛的应用。为了展现代谢工程科研工作者取得的最新进展,促进我国代谢工程研究的进步和发展,本刊2009年第9期设立了"代谢工程与细胞工厂"专栏,国内  相似文献   

2.
利用代谢工程技术提高工业微生物对胁迫的抗性   总被引:1,自引:0,他引:1  
付瑞燕  李寅 《生物工程学报》2010,26(9):1209-1217
代谢工程是工业微生物菌种改造的平台技术,不仅可用于改变微生物细胞内的代谢流向,也可以用于改善工业微生物的生理功能。在工业生产过程中,微生物细胞会面临多种胁迫作用,这些胁迫诱导的基因调节作用,都有可能影响细胞的许多重要生理功能,从而影响生物转化过程的效率。从工业应用的观点出发,选择生产性能良好、对发酵过程中的主要胁迫因素有较强耐受性的菌株至关重要。以下评述了借鉴传统代谢工程技术和反向代谢工程技术来提高工业微生物对胁迫抗性的若干研究策略,提出了该领域目前存在的问题,以及利用代谢工程技术改善微生物胁迫抗性——即微生物生理功能工程的发展方向。  相似文献   

3.
代谢工程利用重组DNA技术导入定向改造的基因 ,以改进微生物细胞的某些代谢特性 ,已经发展成为一个工业微生物育种和优化发酵过程的强有力工具。基因的修饰与表达是代谢工程的重要组成部分。本文介绍了近年来代谢工程中基因修饰与表达所用的工具方面的进展。  相似文献   

4.
系统生物学的迅速发展使人们能够从整体水平上理解细胞的生理生化特性并调控其代谢.系统代谢工程的主要应用之一是以系统生物学为基础对微生物进行定向进化,以期增强细胞对环境胁迫的耐受性,提高目标产品的产量.前者多采用全局转录机制工程和逆代谢工程的方法;后者主要通过设计并导入最优化路径,重构代谢网络及基因的模拟敲除和湿法验证等策略实现.本文综述了利用系统代谢工程解决细胞生物工程几个主要问题的技术及其应用进展.  相似文献   

5.
<正>代谢工程自1991年诞生以来,在改造植物、动物、微生物的代谢功能方面得到了广泛的应用。为了展现代谢工程科研工作者取得的最新进展,促进我国代谢工程研究的进步和发展,本刊2009年第9期设立了"代谢工程与细胞工厂"专栏,国内该领域著名学者对代谢工程的技术发展进行了总结,介绍了合成生物学等新理论和新技术,并发表了  相似文献   

6.
应用代谢网络模型解析工业微生物胞内代谢   总被引:2,自引:2,他引:0  
叶超  徐楠  陈修来  刘立明 《生物工程学报》2019,35(10):1901-1913
为了快速、高效地理解工业微生物胞内代谢特征,寻找潜在的代谢工程改造靶点,基因组规模代谢网络模型(GSMM)作为一种系统生物学工具越来越受到人们的关注。文中在回顾GSMM 20年发展历程的基础上,分析了当前GSMM的研究现状,总结了GSMM的构建及分析方法,从预测细胞表型和指导代谢工程两个方面阐述了GSMM在解析工业微生物胞内代谢中的应用,并展望了GSMM未来的发展趋势。  相似文献   

7.
转录组平台技术及其在代谢工程中的应用   总被引:4,自引:0,他引:4  
组学技术在系统水平上对细胞代谢进行全面的分析,极大地促进了代谢工程的发展和应用。全基因组水平的转录分析可以使研究者更加精确地评估细胞表型,加深对细胞代谢的理解。而且转录组分析也有助于研究者鉴定菌种改良的目标基因,加速对微生物细胞工厂的合理设计及构建。文中介绍了3种主要转录组平台技术的原理,并总结了转录组学在代谢工程领域中应用的最新进展和未来发展趋势。  相似文献   

8.
丝状真菌(Filamentous fungi)作为重要的工业发酵微生物,在有机酸、蛋白质及次级代谢产物等关键生物基产品生产方面发挥着重要作用。自20世纪90年代代谢工程理念提出以来,尤其是代谢工程使能技术的创新及发展,极大地促进了丝状真菌细胞工厂的构建及其在工业发酵领域的应用。文中将系统介绍近年来丝状真菌代谢工程技术的发展,及其在生物基化学品细胞工厂构建中的应用,最后讨论丝状真菌代谢工程中关键问题并展望其未来发展。  相似文献   

9.
代谢工程技术是构建微生物细胞工厂的重要方法,其主要目标是通过基因工程等手段将目标代谢产物产量最大化。然而基因工程等操作往往会影响细胞生长速率,导致其生产强度降低。随着合成生物学及相关技术的发展,多种调控策略被应用于代谢工程领域以解决上述问题。通过这些调控可以有效地解决细胞生长与产物合成之间的竞争关系,平衡代谢途径,避免中间代谢产物的过量积累。对这些策略的研究及应用进行了概述和展望。  相似文献   

10.
<正>代谢工程自1991年诞生以来,在改造植物、动物、微生物的代谢功能方面得到了广泛的应用。为了展现代谢工程科研工作者取得的最新进展,促进我国代谢工程研究的进步和发展,本刊2009年第9期设立了"代谢工  相似文献   

11.
代谢工程在芳香化合物生物合成研究中的应用   总被引:4,自引:0,他引:4  
生物技术和代谢工程的发展促进了生物合成研究。概述了近年来利用微生物莽草酸途径进行芳香化合物生物合成研究的现况、代谢工程在提高天然芳香化合物产量和扩大合成非天然产生的芳香化合物范围的应用的进展 ,特别是整体代谢工程对提高第二代工程菌产量的作用。指出了生物合成法是生产氨基酸及其它生物小分子如奎尼酸、维生素和抗生素等的未来趋势 ,在工业化生产中有着广阔的应用前景。  相似文献   

12.

With the advancement of biotechnological tools and techniques such as next generation sequencing, RNAomics, epigenomics, gene silencing, plant, microbe transformation, proteomics and metabolomics, the understanding of metabolic pathways and their manipulation for the desired characters became feasible. Metabolic engineering has been successful in the production of golden rice, bioprocess for artemisinin production, flavonoids in plant and microbes as well as generated biotic and abiotic stress tolerance in several crop plants. In view of the significance of metabolic engineering, this article includes recent techniques developed and their use in manipulation of glyoxalase metabolism for multiple abiotic stress tolerance in plants. The importance of engineering of flavonoids pathway for high value antioxidants production as well as improving the biotic and abiotic stress tolerance has been documented. Importance and success of metabolic engineering has been realized by its promising hope for sustainable technologies of bioactives production for mankind’s health as well as in the generation of improved crop varieties.

  相似文献   

13.
基因敲除在工业微生物育种方面的应用   总被引:1,自引:0,他引:1  
微生物育种技术的发展先后经历了自然选育、诱变育种、杂交育种、代谢控制育种和基因工程育种5个阶段,其中基因工程育种技术中的基因敲除技术具有定位性强、经修饰和改造的基因能够随染色体DNA的复制而稳定地复制的特点,使人们可以有目的地去改造生物的遗传物质,从而达到微生物育种的目的,受到人们的广泛关注。就基因敲除技术的几种主要方法及其在改良工业生产菌株中的应用作简要介绍。  相似文献   

14.

Recent progress in synthetic and systems metabolic engineering technologies has explored the potential of microbial cell factories for the production of industrially relevant bulk and fine chemicals from renewable biomass resources in an eco-friendly manner. Corynebacterium glutamicum, a workhorse for industrial amino acid production, has currently evolved into a promising microbial platform for bioproduction of various natural and non-natural chemicals from renewable feedstocks. Notably, it has been recently demonstrated that metabolically engineered C. glutamicum can overproduce several commercially valuable aromatic and related chemicals such as shikimate, 4-hydroxybenzoate, and 4-aminobenzoate from sugars at remarkably high titer suitable to commercial application. On the other hand, overexpression and/or extension of its endogenous metabolic pathways by integrating heterologous metabolic pathways enabled production of structurally intricate and valuable natural chemicals like plant polyphenols, carotenoids, and fatty acids. In this review, we summarize recent advances in metabolic engineering of C. glutamicum for production of those value-added aromatics and other natural products, which highlights high potential and the versatility of this microbe for bioproduction of diverse chemicals.

  相似文献   

15.
微生物细胞表面工程是近年来发展起来的,它利用细胞表面展示技术使外源蛋白固定化于细胞表面,从而生产微生物细胞表面蛋白。微生物细胞表面工程可用于细胞催化剂、细胞吸附剂、活疫苗、生物传感器的开发等。微生物细胞表面工程具有广阔的应用前景,但是国内对这一领域的研究刚起步。在介绍细胞表面工程的基础上,对微生物细胞表面工程技术进展进行了综述,展望了对该技术的发展。  相似文献   

16.
微生物细胞表面工程是近年来发展起来的,它利用细胞表面展示技术使外源蛋白固定化于细胞表面,从而生产微生物细胞表面蛋白。微生物细胞表面工程可用于细胞催化剂、细胞吸附剂、活疫苗、生物传感器的开发等。微生物细胞表面工程具有广阔的应用前景,但是国内对这一领域的研究尚刚起步。在介绍了细胞表面工程的基础上,对微生物细胞表面工程技术进展进行了综述,并对该技术的发展给予展望。  相似文献   

17.
Curdlan is a commercial polysaccharide made by fermentation of Agrobacterium sp. Its anticipated expansion to larger volume markets demands improvement in its production efficiency. Metabolic engineering for strain improvement has so far been limited due to the lack of genetic tools. This research aimed to identify strong promoters and to engineer a strain that converts cellobiose efficiently to curdlan. Three strong promoters were identified and were used to install an energy-efficient cellobiose phosphorolysis mechanism in a curdlan-producing strain. The engineered strains were shown with enhanced ability to utilize cellobiose, resulting in a 2.5-fold increase in titer. The availability of metabolically engineered strain capable of producing β-glucan from cellobiose paves the way for its production from cellulose. The identified native promoters from Agrobacterium open up opportunities for further metabolic engineering for improved production of curdlan and other products. The success shown here marks the first such metabolic engineering effort in this microbe.  相似文献   

18.
微生物SOD的提纯、育种及分子生物学研究   总被引:3,自引:1,他引:3  
超氧化物歧化酶(SOD)是广泛存在于生物体内的一种对机体起保护作用的金属酶,其制品在医疗、食品与化妆品等领域显示出良好的应用前景。常规制取动物SOD受血液来源和得率的限制,而以微生物为原料制备SOD则具有可以大规模培养的优势。本文集中介绍了有关微生物SOD提纯、育种和分子生物学等的研究结果,并就继续研究与应用中的某些问题作了初步探讨。  相似文献   

19.
Methyl ketones present a group of highly reduced platform chemicals industrially produced from petroleum-derived hydrocarbons. They find applications in the fragrance, flavor, pharmacological, and agrochemical industries, and are further discussed as biodiesel blends. In recent years, intense research has been carried out to achieve sustainable production of these molecules by re-arranging the fatty acid metabolism of various microbes. One challenge in the development of a highly productive microbe is the high demand for reducing power. Here, we engineered Pseudomonas taiwanensis VLB120 for methyl ketone production as this microbe has been shown to sustain exceptionally high NAD(P)H regeneration rates. The implementation of published strategies resulted in 2.1 g Laq−1 methyl ketones in fed-batch fermentation. We further increased the production by eliminating competing reactions suggested by metabolic analyses. These efforts resulted in the production of 9.8 g Laq−1 methyl ketones (corresponding to 69.3 g Lorg−1 in the in situ extraction phase) at 53% of the maximum theoretical yield. This represents a 4-fold improvement in product titer compared to the initial production strain and the highest titer of recombinantly produced methyl ketones reported to date. Accordingly, this study underlines the high potential of P. taiwanensis VLB120 to produce methyl ketones and emphasizes model-driven metabolic engineering to rationalize and accelerate strain optimization efforts.  相似文献   

20.
魏绍巍  黎茵 《生物工程学报》2011,27(12):1702-1710
植物磷酸烯醇式丙酮酸羧化酶(Phosphoenolpyruvate carboxylase,PEPC,EC 4.1.1.31)是广泛存在的一种细胞质酶,催化磷酸烯醇式丙酮酸(PEP)和HCO3-生成草酰乙酸(OAA),后者可转化生成三羧酸循环的多种中间产物.PEPC在植物细胞中参与植物的光合碳同化等重要代谢途径,并且在不同组织中具有多种生理功能.PEPC同时也参与调控植物种子的营养物质合成与代谢过程,控制糖类物质流向脂肪酸合成或蛋白质合成途径.以下介绍了植物PEPC的种类、蛋白质结构特点及其在植物组织中的调控方式,并重点论述了PEPC在生物基因工程中的应用方面的进展,随着对其功能机制和应用研究的深入,将有助于植物PEPC在高产优质农作物育种、能源植物和工业微生物等的开发利用等方面得到更好的发展与应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号