首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Infection by Kaposi's sarcoma-associated herpesvirus (KSHV) is central to the pathogenesis of the endothelial neoplasm Kaposi's sarcoma (KS) and is also linked to the rare B-cell tumor known as primary effusion lymphoma (PEL). Latently infected PEL cell lines can be induced to enter the lytic cycle and produce KSHV virions. However, such cells do not support de novo infection or serial propagation of KSHV. These limitations have prevented the development of systems for the genetic analysis of KSHV and have impeded a deeper understanding of KS pathogenesis. Here we show that human dermal microvascular endothelial cells immortalized by expression of telomerase can be readily infected by KSHV virions produced by PEL cells. Infection is predominantly latent, but a small subpopulation enters the lytic cycle spontaneously. Phorbol ester (tetradecanoyl phorbol acetate [TPA]) treatment of latently infected cells leads to enhanced induction of lytic KSHV replication, resulting in foci of cytopathic effect. There is no cytopathic effect or viral DNA expansion when infected TIME cells (telomerase-immortalized microvascular endothelial cells) are TPA induced in the presence of phosphonoacetic acid (PAA), an inhibitor of herpesvirus replication. Supernatants from phorbol-induced cultures transfer latent KSHV infection to uninfected cells, which can likewise be induced to undergo lytic replication by TPA treatment, and the virus can be further serially transmitted. Serial passage of the virus in TIME cells is completely inhibited when TPA treatment is done in the presence of PAA. Latently infected endothelial cells do not undergo major morphological changes or growth transformation, and infection is lost from the culture upon serial passage. This behavior faithfully recapitulates the behavior of spindle cells explanted from primary KS biopsies, strongly supporting the biological relevance of this culture system. These findings suggest that either the stability or the growth-deregulatory potential of the KSHV latency program in endothelial cells is more limited than might be predicted by analogy with other oncogenic viruses.  相似文献   

2.
3.
Kaposi's sarcoma-associated herpesvirus (KSHV) is the infectious cause of Kaposi's sarcoma, primary effusion lymphoma, and plasmablastic multicentric Castleman's disease. STAT3 has been shown to be important for the maintenance of primary effusion lymphoma cells in culture and is chronically activated in many tumor cell lines. However, little is known about the role of KSHV in the activation of STAT3 or the role of STAT3 in KS tumors. We demonstrate that STAT3 is activated by KSHV infection of endothelial cells, the KS tumor cell type, in a biphasic fashion. Viral binding and entry activate STAT3 in the first 2 h after infection, but this activation dissipates by 4 h postinfection. By 12 h after KSHV infection, concomitant with the expression of latent genes, STAT3 is once again activated, and this activation persists for as long as latent infection is maintained. Activated STAT3 translocates to the nucleus, where it can bind to STAT3-specific DNA elements and can activate STAT3-dependent promoter activity. Conditioned medium from KSHV-infected endothelial cells is able to transiently activate STAT3, indicating the involvement of a secreted factor and that a latency-associated factor in KSHV-infected cells is necessary for sustained activation. KSHV upregulates gp130 receptor expression, and both gp130 and JAK2 are required for the activation of STAT3. However, neither human nor viral interleukin-6 is required for STAT3 activation. Persistent activation of the oncogenic signal transducer, STAT3, by KSHV may play a critical role in the viral pathogenesis of Kaposi's sarcoma, as well as in primary effusion lymphomas.  相似文献   

4.
5.
6.
Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman's disease. Most KS tumor cells are latently infected with KSHV and are of endothelial origin. While PEL-derived cell lines maintain KSHV indefinitely, all KS tumor-derived cells to date have lost viral genomes upon ex vivo cultivation. To study KSHV latency and tumorigenesis in endothelial cells, we generated telomerase-immortalized human umbilical vein endothelial (TIVE) cells. TIVE cells express all KSHV latent genes 48 h postinfection, and productive lytic replication could be induced by RTA/Orf50. Similar to prior models, infected cultures gradually lost viral episomes. However, we also obtained, for the first time, two endothelial cell lines in which KSHV episomes were maintained indefinitely in the absence of selection. Long-term KSHV maintenance correlated with loss of reactivation in response to RTA/Orf50 and complete oncogenic transformation. Long-term-infected TIVE cells (LTC) grew in soft agar and proliferated under reduced-serum conditions. LTC, but not parental TIVE cells, formed tumors in nude mice. These tumors expressed high levels of the latency-associated nuclear antigen (LANA) and expressed lymphatic endothelial specific antigens as found in KS (LYVE-1). Furthermore, host genes, like those encoding interleukin 6, vascular endothelial growth factor, and basic fibroblast growth factor, known to be highly expressed in KS lesions were also induced in LTC-derived tumors. KSHV-infected LTCs represent the first xenograft model for KS and should be of use to study KS pathogenesis and for the validation of anti-KS drug candidates.  相似文献   

7.
Deng JH  Zhang YJ  Wang XP  Gao SJ 《Journal of virology》2004,78(20):11108-11120
Defective viruses often have pivotal roles in virus-induced diseases. Although Kaposi's sarcoma-associated herpesvirus (KSHV) is etiologically associated with Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL), defective KSHV has not been reported. Using differential genetic screening methods, we show that defective KSHV is present in KS tumors and PEL cell lines. To investigate the role of defective viruses in KSHV-induced pathogenesis, we isolated and characterized a lytic replication-defective KSHV, KV-1, containing an 82-kb genomic deletion of solely lytic genes. Cells harboring KV-1 escaped G(0)/G(1) apoptosis induced by spontaneous lytic replication occurred in cells infected with regular KSHV but maintained efficient latent replication. Consequently, KV-1-infected cells had phenotypes of enhanced cell proliferation and transformation potentials. Importantly, KV-1 was packaged as infectious virions by using regular KSHV as helpers, and KV-1-like variants were detected in cultures of two of five KSHV cell lines and 1 of 18 KS tumors. These results point to a potential role for defective viruses in the regulation of KSHV infection and malignant transformation.  相似文献   

8.
9.
Following the demonstration in 1994, that Kaposi's sarcoma (KS) was associated with a novel virus (KSHV or HHV-8) belonging to the lymphotropic herpes family, this virus was also found in certain lymphoid neoplasias of immunodeficient (HIV+) and immune competent hosts. The association of HHV-8/KSHV infection is now well established with primary effusion lymphoma (PEL) or body cavity based lymphoma (BCBL) and multicentric Castleman's disease (MCD) of the plasma cell type. A possible pathogenic role of HHV-8/KSHV in other lymphoid tumours including primary central nervous system lymphoma (PCNSL) and multiple myeloma (MM) as well as some atypical lymphoproliferations and sarcoidosis has also been suggested, but this is at present a controversial matter, or not confirmed. SeveralHHV-8/KSHV genes, including potential oncogenes, genes homologous to various cellular genes and growth factors have been incriminated in the pathogenesis of KS and PEL/BCBL, but a common pathogenic mechanism for the clearly diverse proliferations represented by PEL, MCD and KS is at present not evident.  相似文献   

10.
s Kaposi's sarcoma-associated herpesvirus (KSHV) was first identified as the etiologic agent of Kaposi's sarcoma (KS) in 1994.KSHV infection is necessary,but not sufficient for the development of Kaposi sarcoma (KS),primary effusion lymphoma (PEL),and multicentric Castleman disease (MCD).Advances in the prevention and treatment of KSHV-associated Diseases have been achieved,even though current treatment options are ineffective,or toxic to many affected persons.The identification of new targets for potential future therapies and the randomized trial to evaluate the efficacy of new antivirals are required.  相似文献   

11.
12.
The molecular pathology of Kaposi's sarcoma-associated herpesvirus   总被引:9,自引:0,他引:9  
Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) is the eighth and most recently identified human herpesvirus (HHV-8). KSHV was discovered in 1994 by Chang et al. who used representational difference analysis to search for DNA sequences present in AIDS-associated KS but not in adjacent normal skin [1]. The virus has since been shown to be specifically associated with all forms of this disease and has fulfilled all of Hill's criteria for causation (reviewed in ). KSHV is also found in all cases of primary effusion lymphoma and in a plasmablastic variant of multicentric Castleman's disease. Over the last few years a wealth of data has been gained on the role of KSHV genes during infection. This review is an attempt to assemble this information into a more complete picture of how KSHV may cause disease.  相似文献   

13.
Di Qin  Chun Lu 《中国病毒学》2008,23(6):473-485
Kaposi sarcoma-associated herpesvirus (KSHV),also known as human herpesvirus 8 (HHV-8),is discovered in 1994 from Kaposi's sarcoma (KS) lesion of an acquired immunodeficiency syndrome (AIDS)patient.In addition to its association with KS,KSHV has also been implicated as the causative agent of two other AIDS-associated malignancies:primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD).KSHV is a complex DNA virus that not only has the ability to promote cellular growth and survival for tumor development,but also can provoke deregulated angiogenesis,inflammation,and modulate the patient's immune system in favor of tumor growth.As KSHV is a necessary but not sufficient etiological factor for KS,human immunodeficiency virus (HIV) is a very important cofactor.Here we review the basic information about the biology of KSHV,development of pathogenesis and interaction between KSHV and HIV.  相似文献   

14.
15.
Angiogenic Kaposi's sarcoma (KS) skin lesions found in both AIDS and non-AIDS patients are universally associated with infection by the presumed causative agent, known as KS-associated herpesvirus (KSHV) or human herpesvirus 8. KSHV genomes expressing latent state virus-encoded mRNAs and the LANA1 (latent nuclear antigen 1) protein are consistently present in spindle-like tumor cells that are thought to be of endothelial cell origin. Although the KSHV lytic cycle can be induced in rare latently infected primary effusion lymphoma (PEL) cell lines, the ability to transmit or assay infectious KSHV has so far eluded investigators. Here, we demonstrate that infection with supernatant virions derived from three different tetradecanoyl phorbol acetate-induced PEL cell lines can induce cultured primary human dermal microvascular endothelial cells (DMVEC) to form colonies of proliferating latently infected spindle-shaped cells, all of which express the KSHV-encoded LANA1 protein. Although their initial infectivity varied widely (JSC1 > > BC3 > BCP1), virions from all three cell lines produced distinctive spindle cell colonies and plaques without affecting the contact-inhibited cobblestone-like phenotype of adjacent uninfected DMVEC. Each infected culture could also be expanded into a completely spindloid persistently infected culture displaying aggregated swirls of spindle cells resembling those in KS lesions. Formation of new colonies and plaques was inhibited in the presence of phosphonoacetic acid or gangciclovir, but these antiherpesvirus agents had little effect on the propagation of already latently infected spindloid cultures. In persistently infected secondary cultures, patches of up to 10% of the spindloid cells constitutively expressed several early viral lytic cycle proteins, and 1 to 2% of the cells also formed typical herpesvirus DNA replication compartments, displayed cytopathic rounding effects, and expressed late viral antigens. We conclude that de novo KSHV infection induces a spindle cell conversion phenotype in primary DMVEC cultures that is directly associated with latent state expression of the LANA1 protein. However, these cultures also spontaneously reactivate to produce an unusual combination of both latent and productive but slow lytic cycle infection. The formation of spindle cell colonies and plaques in DMVEC cultures provides for the first time a quantitative assay for directly measuring the infectivity of KSHV virion preparations.  相似文献   

16.
Li X  Feng J  Sun R 《Journal of virology》2011,85(2):715-724
Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL) cells are predominantly infected with latent Kaposi's sarcoma-associated herpesvirus (KSHV), presenting a barrier to the destruction of tumor cells. Latent KSHV can be reactivated to undergo lytic replication. Here we report that in PEL cells, oxidative stress induced by upregulated reactive oxygen species (ROS) can lead to KSHV reactivation or cell death. ROS are upregulated by NF-κB inhibition and are required for subsequent KSHV reactivation. Disruption of the intracellular redox balance through depletion of the antioxidant glutathione or inhibition of the antioxidant enzyme catalase also induces KSHV reactivation, suggesting that hydrogen peroxide induces reactivation. In addition, p38 signaling is required for KSHV reactivation induced by ROS. Furthermore, treatment of PEL cells with a higher concentration of the NF-κB inhibitor than that used for inducing KSHV reactivation further upregulates ROS and induces massive cell death. ROS, but not p38 signaling, are required for PEL cell death induced by NF-κB inhibition as well as by glutathione depletion. Importantly, anticancer drugs, such as cisplatin and arsenic trioxide, also induce KSHV reactivation and PEL cell death in a ROS-dependent manner. Our study thus establishes a critical role for ROS and oxidative stress in the regulation of KSHV reactivation and PEL cell death. Disrupting the cellular redox balance may be a potential strategy for treating KSHV-associated lymphoma.  相似文献   

17.
Fujimuro M 《Uirusu》2006,56(2):209-218
Kaposi's sarcoma-associated herpesvirus (KSHV, also known as human herpesvirus 8), is well known to be responsible for Kaposi's sarcoma, the most common AIDS-related cancer. KSHV is also associated with the B cell malignancies primary effusion lymphoma and multicentric Castleman's disease. Cellular signaling pathways regulate the proliferation and differentiation during normal development and a small number of signaling pathways are involved in tumors. KSHV utilize those pathways, such as pRb-E2F, Wnt and Notch pathways, to promote driving of cell cycle and to regulate their own life-cycles (i.e., latency and lytic cycle). This review focuses on signaling pathways which KSHV gene products manipulate and discusses their contributions to tomorigenesis and regulation of viral life-cycles.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号