首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biology of glutathione peroxidases and peroxiredoxins is reviewed with emphasis on their role in metabolic regulation. Apart from their obvious function in balancing oxidative challenge, these thiol peroxidases are not only implicated in orchestrating the adaptive response to oxidative stress, but also in regulating signaling triggered by hormones, growth factors and cytokines. The mechanisms presently discussed comprise dampening of redox-sensitive regulatory processes by elimination of hydroperoxides, suppression of lipoxygenase activity, committing suicide to save H2O2 for signaling, direct binding to receptors or regulatory proteins in a peroxidase activity-independent manner, or acting as sensors for hydroperoxides and as transducers of oxidant signals. The various mechanistic proposals are discussed in the light of kinetic data, which unfortunately are scarce. Taking into account pivotal criteria of a meaningful regulatory circuit, kinetic plausibility and specificity, the mechanistic concepts implying a direct sensor/transducer function of the thiol peroxidases appear most appealing. With rate constants for the reaction with hydroperoxide of 105–108 M? 1 s? 1, thiol peroxidases are qualified as kinetically preferred hydroperoxide sensors, and the ability of the oxidized enzymes to react with defined protein thiols lends specificity to the transduction process. The versatility of thiol peroxidases, however, allows multiple ways of interaction with regulatory pathways.  相似文献   

2.
The authors have reconstructed the phylogenetic relationships of the main evolutionary lines of mammalian heme containing peroxidases. The sequences of intensively investigated human myeloperoxidase, eosinophil peroxidase, and lactoperoxidase, which participate in host defence against infections, were aligned together with newly found open reading frames coding for highly similar putative peroxidase domains in all kingdoms of life. The evolutionary relationships were reconstructed using neighbor-joining, maximum parsimony, and maximum likelihood methods. It is demonstrated that this enzyme superfamily obeys the rules of birth-and-death model of multigene family evolution and contains proteins with a variety of function that could be grouped in seven subfamilies. On the basis of occurrence and the fact that two main enzymatic activities are related with these metalloproteins, they propose the name peroxidase-cyclooxygenase superfamily for this widely spread group of heme-containing oxidoreductases. Well known structure-function relationships in mammalian peroxidases formed the basis for the critical inspection of all subfamilies. The presented data unequivocally suggest that predecessor genes of mammalian heme peroxidases have segregated very early in evolution. Before organisms developed an acquired immunity, their antimicrobial defence depended on enzymes that were recruited upon pathogen invasion and could produce antimicrobial reaction products. Thus, these peroxidatic heme proteins evolved to important components in the innate immune defence system. This work shows that even in certain prokaryotic organisms, genes encoding putative antimicrobial enzymes are found providing a group of bacteria with an evolutionary advantage over the others.  相似文献   

3.
Analysis of the selenoproteome identified five glutathione peroxidases (GPxs) in mammals: cytosolic GPx (cGPx, GPx1), phospholipid hydroperoxide GPx (PHGPX, GPx4), plasma GPx (pGPX, GPx3), gastrointestinal GPx (GI-GPx, GPx2) and, in humans, GPx6, which is restricted to the olfactory system. GPxs reduce hydroperoxides to the corresponding alcohols by means of glutathione (GSH). They have long been considered to only act as antioxidant enzymes. Increasing evidence, however, suggests that nature has not created redundant GPxs just to detoxify hydroperoxides. cGPx clearly acts as an antioxidant, as convincingly demonstrated in GPx1-knockout mice. PHGPx specifically interferes with NF-kappaB activation by interleukin-1, reduces leukotriene and prostanoid biosynthesis, prevents COX-2 expression, and is indispensable for sperm maturation and embryogenesis. GI-GPx, which is not exclusively expressed in the gastrointestinal system, is upregulated in colon and skin cancers and in certain cultured cancer cells. GI-GPx is a target for Nrf2, and thus is part of the adaptive response by itself, while PHGPx might prevent cancer by interfering with inflammatory pathways. In conclusion, cGPx, PHGPx and GI-GPx have distinct roles, particularly in cellular defence mechanisms. Redox sensing and redox regulation of metabolic events have become attractive paradigms to unravel the specific and in part still enigmatic roles of GPxs.  相似文献   

4.
Redox and antioxidant systems of the malaria parasite Plasmodium falciparum   总被引:4,自引:0,他引:4  
The malaria parasite Plasmodium falciparum is highly adapted to cope with the oxidative stress to which it is exposed during the erythrocytic stages of its life cycle. This includes the defence against oxidative insults arising from the parasite's metabolism of haemoglobin which results in the formation of reactive oxygen species and the release of toxic ferriprotoporphyrin IX. Central to the parasite's defences are superoxide dismutases and thioredoxin-dependent peroxidases; however, they lack catalase and glutathione peroxidases. The vital importance of the thioredoxin redox cycle (comprising NADPH, thioredoxin reductase and thioredoxin) is emphasized by the confirmation that thioredoxin reductase is essential for the survival of intraerythrocytic P. falciparum. The parasites also contain a fully functional glutathione redox system and the low-molecular-weight thiol glutathione is not only an important intracellular thiol redox buffer but also a cofactor for several redox active enzymes such as glutathione S-transferase and glutaredoxin. Recent findings have shown that in addition to these cytosolic redox systems the parasite also has an important mitochondrial antioxidant defence system and it is suggested that lipoic acid plays a pivotal part in defending the organelle from oxidative damage.  相似文献   

5.
6.
《Free radical research》2013,47(1):131-135
A comparative study has been carried out on the general reactivity of lipid hydroperoxides in liposornes, biological membranes and lipoproteins with two Se-dependent peroxidases: Glutathione Peroxidase (GPX) and Phospholipid Hydroperoxide Glutathione Peroxidase (PHGPX). While PHGPX reduces all hydroperoxides derived from phospholipids, cholesterol and cholesterol esters, GPX reduces only fatty acid hydroperoxides released after treatment of phospholipid hydroperoxides with phospholipase A,. These findings highlight the role of PHGPX in protecting biomembranes from peroxidative damage and add new insight into how cholesterol hydroperoxides are detossified in cells.  相似文献   

7.
A comparative study has been carried out on the general reactivity of lipid hydroperoxides in liposornes, biological membranes and lipoproteins with two Se-dependent peroxidases: Glutathione Peroxidase (GPX) and Phospholipid Hydroperoxide Glutathione Peroxidase (PHGPX). While PHGPX reduces all hydroperoxides derived from phospholipids, cholesterol and cholesterol esters, GPX reduces only fatty acid hydroperoxides released after treatment of phospholipid hydroperoxides with phospholipase A,. These findings highlight the role of PHGPX in protecting biomembranes from peroxidative damage and add new insight into how cholesterol hydroperoxides are detossified in cells.  相似文献   

8.
Superoxide dismutase, catalase, glutathione peroxidase and peroxiredoxins form an antioxidant network protecting cells against reactive oxygen species (ROS). Catalase is a potent H2O2-detoxifying enzyme, which is unexpectedly absent in some members of the Kinetoplastida and Apicomplexa, but present in Toxoplasma gondii. In T. gondii, catalase appears to be cytosolic. In addition, T. gondii also possesses genes coding for other types of peroxidases, including glutathione/thioredoxin-like peroxidases and peroxiredoxins. This study presents a detailed analysis of the role of catalase in the parasite and reports the existence of antioxidant enzymes localized in the cytosol and the mitochondrion of T. gondii. The catalase gene was disrupted and, in addition, T. gondii cell lines overexpressing either catalase or a cytosolic 1-cys peroxiredoxin, TgPrx2, under the control of a strong promoter were created. Analysis of these mutants confirmed that the catalase activity is cytosolic and is encoded by a unique gene in T. gondii. Furthermore, the catalase confers protection against H2O2 exposure and contributes to virulence in mice. The overexpression of Prx2 also increases protection against H2O2 treatment, suggesting that catalase and other peroxidases function as a defence mechanism against endogenously produced reactive oxygen intermediates and the oxidative stress imposed by the host.  相似文献   

9.
Summary Glutathione peroxidase and glutathione S-transferase both utilize glutathione (GSH) to destroy organic hydroperoxides, and these enzymes are thought to serve an antioxidant function in mammalian cells by catalyzing the destruction of lipid hydroperoxides. Only two groups of procaryotes, the purple bacteria and the cyanobacteria, produce GSH, and we show in the present work that representatives from these two groups (Escherichia coli, Beneckea alginolytica, Rhodospirillum rubrum, Chromatium vinosum, andAnabaena sp. strain 7119) lack significant glutathione peroxidase and glutathione S-transferase activities. This finding, coupled with the general absence of polyunsaturated fatty acids in procaryotes, suggests that GSH-dependent peroxidases evolved in eucaryotes in response to the need to protect against polyunsaturated fatty acid oxidation. A second antioxidant function of GSH is mediated by glutathione thiol-transferase, which catalyzes the reduction of various cellular disulfides by GSH. Two of the five GSH-producing bacteria studied (E. coli andB. alginolytica) produced higher levels of glutathione thiol-transferase than found in rat liver, whereas the activity was absent in the other three species studied. The halobacteria produced γ-glutamylcysteine rather than GSH, and assays for γ-glutamylcysteine-dependent enzymes demonstrated an absence of peroxidase and S-transferase activities but the presence of significant thioltransferase activity. Based upon these results it appears that GSH and γ-glutamylcysteine do not function in bactera as antioxidants directed against organic hydroperoxides but do play a significant, although not universal, role in main-taining disulfides in a reduced state. The function of GSH in the photosynthetic bacteria, aside from providing a form of cysteine resistant toward autoxidation, remains a puzzle, as none of the GSH-dependent enzymes tested other than glutathione reductase were present in these organisms.  相似文献   

10.
Two types of GSH peroxidase occur in the cell both of which detoxify fatty acid hydroperoxides, thymine hydroperoxide and DNA hydroperoxides. One is a Se-dependent enzyme which also detoxifies H2O2. The other contains members of the GSH transferase supergene family. These non-selenium dependent GSH peroxidases do not detoxify H2O2 and have substrate specificities varying markedly with the isoenzyme. Of particular interest is GSH transferase 5*-5* an enzyme extracted from the nucleus with urea which has a relatively high activity towards DNA hydroperoxide. The possible role of these enzymes in the detoxication of lipid and DNA hydroperoxides is discussed and it is pointed out that they may be important participants in mechanism for the repair of free-radical damage.  相似文献   

11.
Redox events in interleukin-1 signaling   总被引:7,自引:0,他引:7  
There is increasing evidence that reactive oxygen species (ROS) are mediators in growth factor and cytokine signaling pathways. Mechanisms by which ROS can interfere with signaling cascades may include regulation of protein activities by the modification of essential cysteines. Modification can be performed chemically or enzyme-catalyzed. Enzymes catalyzing a reversible thiol modification within proteins are to be able to react with both, ROS and protein thiols. If hydroperoxides are involved, promising candidates are peroxiredoxins and glutathione peroxidases (GPx), especially the phospholipid hydroperoxide GPx. Interleukin-1, one of the key players in inflammatory response, stimulates the production of ROS itself, but its signaling cascade can also be influenced by ROS and by thiol modifying agents. Targets are located in early, intermediate, and late events in the signaling cascade. We here summarize what is known about the effects of thiol modifying agents, selenium and glutathione peroxidases, on the assembly of the IL-1 receptor signaling complex as an early event, on the activation of NF-kappa B as an intermediate event, and on the expression of cell adhesion molecules as a late event in IL-1 signaling.  相似文献   

12.
An integrative mathematical model was developed to obtain an overall picture of lipid hydroperoxide metabolism in the mitochondrial inner membrane and surrounding matrix environment. The model explicitly considers an aqueous and a membrane phase, integrates a wide set of experimental data, and unsupported assumptions were minimized. The following biochemical processes were considered: the classic reactional scheme of lipid peroxidation; antioxidant and pro-oxidant effects of vitamin E; pro-oxidant effects of iron; action of phospholipase A2, glutathione-dependent peroxidases, glutathione reductase and superoxide dismutase; production of superoxide radicals by the mitochondrial respiratory chain; oxidative damage to proteins and DNA. Steady-state fluxes and concentrations as well as half-lives and mean displacements for the main metabolites were calculated. A picture of lipid hydroperoxide physiological metabolism in mitochondria in vivo showing the main pathways is presented. The main results are:(a) perhydroxyl radical is the main initiation agent of lipid peroxidation (with a flux of 10−7Ms−1); (b) vitamin E efficiently inhibits lipid peroxidation keeping the amplification (kinetic chain length) of lipid peroxidation at low values (10); (c) only a very minor fraction of lipid hydroperoxides escapes reduction via glutathione-dependent peroxidases; (d) oxidized glutathione is produced mainly from the reduction of hydrogen peroxide and not from the reduction of lipid hydroperoxides.  相似文献   

13.
The yeast Saccharomyces cerevisiae contains two glutaredoxins, encoded by GRX1 and GRX2, which are active as glutathione-dependent oxidoreductases. Our studies show that changes in the levels of glutaredoxins affect the resistance of yeast cells to oxidative stress induced by hydroperoxides. Elevating the gene dosage of GRX1 or GRX2 increases resistance to hydroperoxides including hydrogen peroxide, tert-butyl hydroperoxide and cumene hydroperoxide. The glutaredoxin-mediated resistance to hydroperoxides is dependent on the presence of an intact glutathione system, but does not require the activity of phospholipid hydroperoxide glutathione peroxidases (GPX1-3). Rather, the mechanism appears to be mediated via glutathione conjugation and removal from the cell because it is absent in strains lacking glutathione-S-transferases (GTT1, GTT2) or the GS-X pump (YCF1). We show that the yeast glutaredoxins can directly reduce hydroperoxides in a catalytic manner, using reducing power provided by NADPH, GSH, and glutathione reductase. With cumene hydroperoxide, high pressure liquid chromatography analysis confirmed the formation of the corresponding cumyl alcohol. We propose a model in which the glutathione peroxidase activity of glutaredoxins converts hydroperoxides to their corresponding alcohols; these can then be conjugated to GSH by glutathione-S-transferases and transported into the vacuole by Ycf1.  相似文献   

14.
Abstract. In experiments where mung beans ( Vigna radiata L.) and peas ( Pisum sativum L.) have been pre-exposed to ethylene and afterwards treated with ozone, it has been shown that such ethylenepretreated plants may become more resistant to ozone. Further experiments with hydrogen peroxide (H2O2) and the herbicide paraquat suggest that this increased resistance against ozone depends on the stimulation of ascorbate peroxidase activity which provides cells with increased resistance against the formation of H2O2 which is also formed when plants are fumigated with ozone. These results explain why increased production of ethylene can be observed in plants exposed with ozone or other oxidative stress and clearly demonstrate that in plants, as well as animals, peroxidases protect cells against harmful concentrations of hydroperoxides.  相似文献   

15.
Cell death pathways such as apoptosis can be activated in response to oxidative stress, enabling the disposal of damaged cells. In contrast, controlled intracellular redox events are proposed to be a significant event during apoptosis signaling, regardless of the initiating stimulus. In this scenario oxidants act as second messengers, mediating the post-translational modification of specific regulatory proteins. The exact mechanism of this signaling is unclear, but increased understanding offers the potential to promote or inhibit apoptosis through modulating the redox environment of cells. Peroxiredoxins are thiol peroxidases that remove hydroperoxides, and are also emerging as important players in cellular redox signaling. This review discusses the potential role of peroxiredoxins in the regulation of apoptosis, and also their ability to act as biomarkers of redox changes during the initiation and progression of cell death.  相似文献   

16.
Selenoprotein K (SelK) is a membrane protein involved in antioxidant defense, calcium regulation and the ER-associated protein degradation pathway. We found that SelK exhibits a peroxidase activity with a rate that is low but within the range of other peroxidases. Notably, SelK reduced hydrophobic substrates, such as phospholipid hydroperoxides, which damage membranes. Thus, SelK might be involved in membrane repair or related pathways. SelK was also found to contain a diselenide bond—the first intramolecular bond of that kind reported for a selenoprotein. The redox potential of SelK was −257 mV, significantly higher than that of diselenide bonds in small molecules or proteins. Consequently, SelK can be reduced by thioredoxin reductase. These finding are essential for understanding SelK activity and function.  相似文献   

17.
Microorganisms employ diverse mechanisms to withstand physiological stress conditions exerted by reactive or toxic oxygen and nitrogen species such as hydrogen peroxide, organic hydroperoxides, superoxide anions, nitrite, hydroxylamine, nitric oxide or NO-generating compounds. This study identified components of the oxidative and nitrosative stress defence network of Wolinella succinogenes, an exceptional Epsilonproteobacterium that lacks both catalase and haemoglobins. Various gene deletion-insertion mutants were constructed, grown by either fumarate respiration or respiratory nitrate ammonification and subjected to disc diffusion, growth and viability assays under stress conditions. It was demonstrated that mainly two periplasmic multihaem c-type cytochromes, namely cytochrome c peroxidase and cytochrome c nitrite reductase (NrfA), mediated resistance to hydrogen peroxide. Two AhpC-type peroxiredoxin isoenzymes were shown to be involved in protection against different organic hydroperoxides. The phenotypes of two superoxide dismutase mutants lacking either SodB or SodB2 implied that both isoenzymes play important roles in oxygen and superoxide stress defence although they are predicted to reside in the cytoplasm and periplasm respectively. NrfA and a cytoplasmic flavodiiron protein (Fdp) were identified as key components of nitric oxide detoxification. In addition, NrfA (but not the hybrid cluster protein Hcp) was found to mediate resistance to hydroxylamine stress. The results indicate the presence of a robust oxidative and nitrosative stress defence network and identify NrfA as a multifunctional cytochrome c involved in both anaerobic respiration and stress protection.  相似文献   

18.
Mechanisms of plant resistance to viruses   总被引:2,自引:0,他引:2  
Plants have evolved in an environment rich with microorganisms that are eager to capitalize on the plants' biosynthetic and energy-producing capabilities. There are approximately 450 species of plant-pathogenic viruses, which cause a range of diseases. However, plants have not been passive in the face of these assaults, but have developed elaborate and effective defence mechanisms to prevent, or limit, damage owing to viral infection. Plant resistance genes confer resistance to various pathogens, including viruses. The defence response that is initiated after detection of a specific virus is stereotypical, and the cellular and physiological features associated with it have been well characterized. Recently, RNA silencing has gained prominence as an important cellular pathway for defence against foreign nucleic acids, including viruses. These pathways function in concert to result in effective protection against virus infection in plants.  相似文献   

19.
The present review deals with the chemical properties of selenium in relation to its antioxidant properties and its reactivity in biological systems. The interaction of selenite with thiols and glutathione and the reactivity of selenocompounds with hydroperoxides are described. After a short survey on distribution, metabolism and organification of selenium, the role of this element as a component of the two seleno-dependent glutathione peroxidases is described. The main features of glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are also reviewed. Both enzymes reduce different hydroperoxides to the corresponding alcohols and the major difference is the reduction of lipid hydroperoxides in membrane matrix catalyzed only by the phospholipid hydroperoxide glutathione peroxidase. However, in spite of the different specificity for the peroxidic substrates, the kinetic mechanism of both glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase seems identical and proceeds through a tert-uni ping pong mechanism. In the reaction cycle, indeed, as supported by the kinetic data, the oxidation of the ionized selenol by the hydroperoxide yields a selenenic acid that in turn is reduced back by two reactions with reduced glutathione. Special emphasis has been given to the role of selenium-dependent glutathione peroxidases in the prevention of membrane lipid peroxidation. While glutathione peroxidase is able to reduce hydrogen peroxide and other hydroperoxides possibly present in the soluble compartment of the cell, this enzyme fails to inhibit microsomal lipid peroxidation induced by NADPH or ascorbate and iron complexes. On the other hand, phospholipid hydroperoxide glutathione peroxidase, by reducing the phospholipid hydroperoxides in the membranes, actively prevents lipid peroxidation, provided a normal content of vitamin E is present in the membranes. In fact, by preventing the free radical generation from lipid hydroperoxides, phospholipid hydroperoxide glutathione peroxidase decreases the vitamin E requirement necessary to inhibit lipid peroxidation. Finally, the possible regulatory role of the selenoperoxidases on the arachidonic acid cascade enzymes (cyclooxygenase and lipoxygenase) is discussed.  相似文献   

20.
Chivasa S  Simon WJ  Yu XL  Yalpani N  Slabas AR 《Proteomics》2005,5(18):4894-4904
The extracellular matrix is a vital compartment in plants with a prominent role in defence against pathogen attack. Using a maize cell suspension culture system and pathogen elicitors, responses to pathogen attack that are localised to the extracellular matrix were examined by a proteomic approach. Elicitor treatment of cell cultures induced a rapid change in the phosphorylation status of extracellular peroxidases, the apparent disappearance of a putative extracellular beta-N-acetylglucosamonidase, and accumulation of a secreted putative xylanase inhibitor protein. Onset of the defence response was attended by an accumulation of glyceraldehyde-3-phosphate dehydrogenase and a fragment of a putative heat shock protein. Several distinct spots of both proteins, which preferentially accumulated in cell wall protein fractions, were identified. These three novel observations, viz. (i) secretion of a new class of putative enzyme inhibitor, (ii) the apparent recruitment of classical cytosolic proteins into the cell wall and (ii) the change in phosphorylation status of extracellular matrix proteins, suggest that the extracellular matrix plays a complex role in defence. We discuss the role of the extracellular matrix in signal modulation during pathogen-induced defence responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号