首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mutants of Methanococcus voltae were isolated that were resistant to the coenzyme M (CoM; 2-mercaptoethanesulfonic acid) analog 2-bromoethanesulfonic acid (BES). The mutants displayed a reduced ability to accumulate [35S]BES relative to the sensitive parental strain. BES inhibited methane production from CH3-S-CoM in cell extracts prepared from wild-type sensitive or resistant strains. BES uptake required the presence of both CO2 and H2 and was inhibited by N-ethylmaleimide and several reagents that are known to disrupt energy metabolism. The mutants showed normal uptake of isoleucine and were not cross-resistant to either azaserine or 5-methyltryptophan and, thus, were neither defective in general energy-dependent substrate transport nor envelope permeability. Both HS-CoM and CH3-S-CoM prevented the uptake of BES and protected cells from inhibition by it. We propose that M. voltae has an energy-dependent, carrier-mediated uptake system for HS-CoM and CH3-S-CoM which can also mediate uptake of BES.  相似文献   

2.
A system for transport of coenzyme M, 2-mercaptoethanesulfonic acid (HS--CoM), in Methanobacterium ruminatium strain M1 required energy, showed saturation kinetics, and concentrated the coenzyme against a gradient. The process was sensitive to temperature and was maximally active at pH 7.1. Cells took up HS--CoM at a linear rate, with a Vmax of 312 pmol/min per mg (dry weight) and an apparent Km of 73 nM. An intracellular pool of up to 5 mM accumulated which was not exchangeable with the medium. Uptake required both hydrogen and carbon dioxide; it was inhibited by O2. Bromoethanesulfonic acid (BrCH2CH2SO3-), a potent inhibitor of methanogenesis in cell-free extracts, inhibited both uptake and methane production. Results of inhibitor studies with derivatives and analogs of the coenzyme showed that the specificity of the carrier is restricted to a limited range of thioether, thioester, and thiocarbonate derivatives. 2-(Methylthio)ethanesulfonic acid (CH3--S--CoM) showed an apparent Ki for HS--CoM uptake of 15 nM, being taken up itself with a Vmax of 320 pmol/min per mg (dry weight) and an apparent Km of 50 nM. An analysis of intracellular pools after HS--CoM uptake indicated that the predominant forms are a heterodisulfide of unknown composition and CH3--S--CoM.  相似文献   

3.
2-Mercaptoethanesulfonic acid (coenzyme M, HS-CoM), methylcoenzyme M (CH3-S-CoM), acetylcoenzyme M (CH3CO-S-CoM), 2,2′-dithiodiethanesulfonic acid [(S-CoM)2], and bromoethanesulfonic acid can be simultaneously and conveniently determined by isotachophoretic analysis. Amounts as low as 10 pmol can be detected. The reproducibility of the method is within 2%. The reduction of (S-CoM)2 and the formation of CH3-S-CoM from HS-CoM and methanol by dialyzed cell-free extracts of Methanosarcina barkeri were studied.  相似文献   

4.
When 7-mercaptoheptanoylthreonine phosphate (HS-HTP) was used as the sole source of electrons for reductive demethylation of 2-(methylthio)-ethanesulfonic acid (CH3-S-CoM) by cell extracts of Methanobacterium thermoautotrophicum strain delta H, the heterodisulfide of coenzyme M and HS-HTP (CoM-S-S-HTP) was quantitatively produced: HS-HTP + CH3-S-CoM----CH4 + CoM-S-S-HTP. CH4 and CoM-S-S-HTP were produced stoichiometrically in a ratio of 1:1. Coenzyme M (HS-CoM) inhibited HS-HTP driven methanogenesis indicating that CH3-S-CoM rather than HS-CoM was the substrate for CoM-S-S-HTP formation.  相似文献   

5.
Abstract Since bromoethanesulfonate (BES) is an inhibitor of methane production (competitive with methyl-coenzyme M), cells able to accumulate large internal pools of methyl-coenzyme M via uptake of its precursor, HS-CoM, should be protected from BES by addition of HS-CoM to the growth medium. Hydrogen-oxidizing marine methanogen enrichments were prepared from anaerobic sediment samples collected at Sippewisset Salt Marsh and Oyster Bay Inlet near Woods Hole, MA. The three enrichments studied were a mixture of cell types with at least 50% of the culture comprised of methanogens. Methane production was found to be sensitive to BES with half maximal inhibition occurring at 5–20 μM BES depending on the enrichment. For each, half maximal protection against 40 μM BES occurred at a HS-CoM: BES molar ratio of 20: 1 to 40: 1. Since the protected enrichments exhibited normal sensitivity toward BES after removal of HS-CoM, it was concluded that methane production in the presence of both BES and HS-CoM resulted from true protection and not growth of BES-resistant mutants. These results suggest that uptake of HS-CoM may be a general property of methanogens occupying anaerobic marine sediments. It is possible that uptake of this coenzyme is an important nutritional feature of methanogens in their natural habitat.  相似文献   

6.
The transfer of the methyl group of acetate to coenzyme M (2-mercaptoethanesulfonic acid; HS-CoM) during the metabolism of acetate to methane was investigated in cultures of Methanosarcina strain TM-1. The organism metabolized CD3COO- to 83% CD3H and 17% CD2H2 and produced no CDH3 or CH4. The isotopic composition of coenzyme M in cells grown on CD3COO- was analyzed with a novel gas chromatography-mass spectrometry technique. The cells contained CD3-D-CoM and CD2H-S-CoM) in a proportion similar to that of CD3H to CD2H2. These results, in conjunction with a report (J.K. Nelson and J.G. Ferry, J. Bacteriol. 160:526-532, 1984) that extracts of acetate-grown strain TM-1 contain high levels of CH3-S-CoM methylreductase, indicate that CH3-S-CoM is an intermediate in the metabolism of acetate to methane in this organism.  相似文献   

7.
NH4(+)-transport in Anabaena 7120 was studied using the NH4+ analogue, 14CH3NH3+. At pH 7, two energy-dependent NH4(+)-transport systems were detected in both N2- and NO3(-)-grown cells, but none in NH4(+)-grown cells. Both transport systems showed a low and a high affinity mode of operation depending on the substrate concentration. One of the transport systems showed Km values of 8 microM (Vmax = 1 nmole min-1mg-1protein) and 80 microM (Vmax = 7 nmole min-1mg-1protein), and was insensitive to L-methionine-DL-sulphoximine, a glutamate analogue and irreversible inhibitor of glutamine synthetase. The other transport system showed Km values of 2.5 microM (Vmax = 0.1 nmole min-1mg-1protein) and 70 microM (Vmax = 0.7 nmole min-1mg-1protein), and was sensitive to L-methionine-DL-sulphoximine. Intracellular accumulation of free 14CH3NH3+ showed a biphasic pattern in response to variation in external 14CH3NH3+ concentrations. A maximum intracellular concentration of 2.5 mM and 7.5 mM was reached in the external 14CH3NH3+ concentration range of 1-50 microM and 1-500 microM, respectively. At pH 9, an energy-independent diffusion of 14CH3NH2 leading to a higher intracellular accumulation and assimilation rate, than that at pH 7, was observed.  相似文献   

8.
Detection of a glycosylated subunit in human serum ferritin.   总被引:8,自引:1,他引:7       下载免费PDF全文
Chemical reaction of coenzyme M, sodium 2-mercaptoethanesulphonate (HS-CoM, Na+), and formaldehyde formed sodium 2-(hydroxymethylthio)ethanesulphonate (HOCH2-S-CoM), whereas reaction with the ammonium salt of HS-CoM yielded iminobis-[2-(methylthio)ethanesulphonate], monoammonium salt [NH = (CH2 - S - CoM)2]. In water, NH = (CH2 - S - CoM)2 decomposed to 2-(aminomethylthio)ethanesulphonate (NH2CH2 - S - CoM) and HOCH2-S-CoM. NH-2-CH2 - CoM was degraded further to form more HOCH2-S-CoM. The structures of these coenzyme M derivatives were confirmed by i.r. and n.m.r. spectroscopy and by elemental analysis. When added to cell extracts of Methanobacterium thermoautotrophicum, methane was formed from either HOCH2 - S - CoM or NH = (CH2 - S - CoM)2 at rates comparable with the rate of methane formation from the methanogenic precursor 2-(methylthio)-ethanesulphonate (CH3 - S - CoM). Formaldehyde was reduced to methane at similar rates. In addition, certain hemimercaptals, including thiazolidine and thiazolidine-4-carboxylate, were reduced, although at slower rates. The reduction of formaldehyde, thiazolidine, or thiazolidine-4-carboxylate required catalytic amounts of HS-CoM. ATP was required by cells extracts for reduction of each of these methane precursors.  相似文献   

9.
Methyl-coenzyme M reductase (MCR) catalyzes the reduction of methyl-coenzyme M (CH(3)-S-CoM) to methane. The enzyme contains as a prosthetic group the nickel porphinoid F(430) which in the active enzyme is in the EPR-detectable Ni(I) oxidation state. Crystal structures of several inactive Ni(II) forms of the enzyme but not of the active Ni(I) form have been reported. To obtain structural information on the active enzyme-substrate complex we have now acquired X-ray absorption spectra of active MCR in the presence of either CH(3)-S-CoM or the substrate analog coenzyme M (HS-CoM). For both MCR complexes the results are indicative of the presence of a five-coordinate Ni(I), the five ligands assigned as four nitrogen ligands from F(430) and one oxygen ligand. Analysis of the spectra did not require the presence of a sulfur ligand indicating that CH(3)-S-CoM and HS-CoM were not coordinated via their sulfur atom to nickel in detectable amounts. As a control, X-ray absorption spectra were evaluated of three enzymatically inactive MCR forms, MCR-silent, MCR-ox1-silent and MCR-ox1, in which the nickel is known to be six-coordinate. Comparison of the edge position of the X-ray absorption spectra revealed that the Ni(I) in the active enzyme is more reduced than the Ni in the two EPR-silent Ni(II) states. Surprisingly, the edge position of the EPR-active MCR-ox1 state was found to be the same as that of the two silent states indicating similar electron density on the nickel.  相似文献   

10.
Methyl-coenzyme M reductase (MCR), which catalyses the reduction of methyl-coenzyme M (CH(3)-S-CoM) with coenzyme B (H-S-CoB) to CH(4) and CoM-S-S-CoB, contains the nickel porphinoid F430 as prosthetic group. The active enzyme exhibits the Ni(I)-derived axial EPR signal MCR(red1) both in the absence and presence of the substrates. When the enzyme is competitively inhibited by coenzyme M (HS-CoM) the MCR(red1) signal is partially converted into the rhombic EPR signal MCR(red2). To obtain deeper insight into the geometric and electronic structure of the red2 form, pulse EPR and ENDOR spectroscopy at X- and Q-band microwave frequencies was used. Hyperfine interactions of the four pyrrole nitrogens were determined from ENDOR and HYSCORE data, which revealed two sets of nitrogens with hyperfine couplings differing by about a factor of two. In addition, ENDOR data enabled observation of two nearly isotropic (1)H hyperfine interactions. Both the nitrogen and proton data indicate that the substrate analogue coenzyme M is axially coordinated to Ni(I) in the MCR(red2) state.  相似文献   

11.
The kinetics of beta-D-N-acetylhexosaminidase against GM2 ganglioside were examined. We used a crude preparation of rat liver as the enzyme source because purification of beta-D-N-acetylhexosaminidase results in a decrease in specific activity against GM2 ganglioside. Kinetic plots were not linear but showed a break. At substrate concentrations less than 50 microM the Vmax was 6 pmol GM2 hydrolyzed per hour per micromole 4-MU-GlcNAc hydrolyzed per hour (pmol GM2/mumol 4-MU-GlcNAc) and the Km was 5 microM.At substrate concentrations greater than 50 microM, the Vmax was 7 pmol GM2/mumol 4-MU-GlcNAc and the Km was 14 microM. The critical micelle concentration of GM2 ganglioside was 20-25 microM as determined by spectral shifts of the dye pinacyanol chloride in association with GM2, and 10-15 microM from electrical conductivity measurements which also showed the end of the monomer-micelle transition to occur at 40-50 microM GM2. The increasing excess of micellar substrate at greater than 50 microM GM2 explains the discontinuity in the kinetic plots. Sodium taurocholate had a critical micelle concentration of 9-11 mM using pinacyanol chloride and 2.5-3 mM using electrical conductivity. When included in the assay mixture at a concentration of 10 mM, sodium taurocholate produced a linear kinetic plot. This is probably due to the formation of mixed micelles of detergent and GM2 ganglioside. The Vmax was 200 pmol GM2/MUmol 4-MU-GlcNAc and the Km was 93 microM. The data suggest that ganglioside hydrolysis occurs more readily when the substrate is incorporated into a membrane-like environment.  相似文献   

12.
Adipose differentiation related protein (ADRP) is a 50-kDa novel protein cloned from a mouse 1246 adipocyte cDNA library, rapidly induced during adipocyte differentiation. We have examined ADRP function, and we show here that ADRP facilitates fatty acid uptake in COS cells transfected with ADRP cDNA. We demonstrate that uptake of long chain fatty acids was significantly stimulated in a time-dependent fashion in ADRP-expressing COS-7 cells compared with empty vector-transfected control cells. Oleic acid uptake velocity increased significantly in a dose-dependent manner in ADRP-expressing COS-7 cells compared with control cells. The transport Km was 0.051 microM, and Vmax was 57.97 pmol/10(5) cells/min in ADRP-expressing cells, and Km was 0.093 microM and Vmax was 20.13 pmol/10(5) cells/min in control cells. The oleate uptake measured at 4 degrees C was only 10% that at 37 degrees C. ADRP also stimulated uptake of palmitate and arachidonate but had no effect on uptake of medium chain fatty acid such as octanoic acid and glucose. These data suggest that ADRP specifically enhances uptake of long chain fatty acids by increasing the initial rate of uptake and provide novel information about ADRP function as a saturable transport component for long chain fatty acids.  相似文献   

13.
Mouse ileal sodium dependent bile acid transporter (ISBT) was characterized using isolated enterocytes. Only enterocytes from the most distal portion showed Na+-dependent [3H]taurocholate uptake. Northern blot analysis using a probe against mouse ISBT revealed the expression of mouse ISBT mRNA to be restricted to the distal ileum. The Km and Vmax for Na+-dependent [3H]taurocholate transport into isolated ileocytes were calculated as 27 microM and 360 pmol/mg protein/min, respectively. Uptake of [3H]taurocholate was inhibited by N-ethylmaleimide. We have cloned ISBT cDNA from mouse ileum. The cDNA included the entire open reading frame coding 348 amino acid protein with seven hydrophobic segments and two N-glycosylation sites. COS-7 cells transfected with the expression vector containing this cDNA expressed Na+-dependent [3H]taurocholate uptake activity with a Km of 34 microM.  相似文献   

14.
Characterization of the ascorbic acid transport by 3T6 fibroblasts   总被引:2,自引:0,他引:2  
Ascorbic acid transport by 3T6 mouse skin fibroblasts has been characterized using radiometric technique with L-[1-14C]ascorbic acid under the conditions in which oxidation of ascorbic acid was prevented by addition of 1 mM thiourea. The ascorbate transport is temperature-dependent with the energy of activation E and Q10 of 13.3 kcal/mol and 2.0, respectively. The transport requires energy and exhibits Michaelis-Menten kinetics with an apparent Km of 112 microM and Vmax of 158 pmol/min per mg protein, when the extracellular Na+ concentration is 150 mM. The ascorbate transport requires presence of extracellular Na+ and can be inhibited by ouabain treatment. At 40 and 200 microM ascorbate concentrations, respectively, 1.4 and 1.0 moles of Na+ bound the transporter molecule per each mole of ascorbate transported. Increased Na+ binding to the transporter at lower ascorbate concentration may signify multiple Na+-binding sites or ascorbate concentration dependent conformational changes in the transporter molecule. Increasing Na+ concentration decreases Km without affecting Vmax, suggesting that Na+ increases affinity of ascorbate for the transporter molecule without affecting translocation process. An increase in ascorbate concentration reduces the number of Na+ bound to the transporter from 1.4 to 1.0. The ascorbate transport is stimulated by Ca2+ and other divalent cations. The mechanism of stimulation by Ca2+ is not clear. Calcium increases both the Km and Vmax. The data presented support the hypothesis that the ascorbate transport by 3T6 fibroblasts is an energy and temperature-dependent active process driven by the Na+ electrochemical gradient. A potent inhibitor of ascorbate transport is also demonstrated in human serum.  相似文献   

15.
Adenosine transport in bovine chromaffin cells in culture   总被引:8,自引:0,他引:8  
Bovine adrenal chromaffin cells in culture have a high capacity and affinity for adenosine uptake with Vmax = 14 +/- 2.4 pmol/10(6) cells/min (133 pmol/mg of protein/min) and Km = 1 +/- 0.2 microM. Transport studies, at short time periods, in recently isolated chromaffin cells have Vmax = 15 pmol/10(6) cells/min and Km = 1.1 microM in ATP-depleted cells. Endogenous levels of the various purine nucleosides and bases were determined by high pressure liquid chromatography, with adenosine (3 +/- 1 nmol/10(6) cells), inosine (5.3 +/- 1.2 nmol/10(6) cells), and hypoxanthine (2.1 +/- 0.8 nmol/10(6) cells) being the purine metabolites found in the highest concentration. Taking into account the intracellular water, endogenous levels of 2.1, 3.8, and 1.5 mM, respectively, were obtained. Radioactively labeled adenosine inside the cell underwent enzymatic transformations, producing inosine, hypoxanthine, xanthine, and nucleotides, with their appearance and distribution being a function of the incubation time. When nicotine was used as a secretagogue, the adenosine transformed into the nucleotide pool was released, reaching 18 +/- 8% of the total adenosine found in the nucleotides. Dipyridamole, extensively used clinically, was a strong inhibitor for the adenosine uptake into these cells, with Ki = 5 +/- 0.5 nM and noncompetitive kinetically.  相似文献   

16.
The cytosolic fraction of human polymorphonuclear leukocytes precipitated with 60% ammonium sulfate produced 5-lipoxygenase products from [14C]arachidonic acid and omega-6 lipoxygenase products from both [14C]linoleic acid and, to a lesser extent, [14C]- and [3H]arachidonic acid. The arachidonyl 5-lipoxygenase products 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HPETE) and 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) derived from [14C]arachidonic acid, and the omega-6 lipoxygenase products 13-hydroperoxy-9,11-octadecadienoic acid (13-OOH linoleic acid) and 13-hydroxy-9,11-octadecadienoic acid (13-OH linoleic acid) derived from [14C]linoleic acid and 15-hydroxyperoxy-5,8,11,13-eicosatetraenoic acid (15-HPETE), and 15-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE) derived from [14C]- and [3H]arachidonic acid were identified by TLC-autoradiography and by reverse-phase high-performance liquid chromatography (RP-HPLC). Products were quantitated by counting samples that had been scraped from replicate TLC plates and by determination of the integrated optical density during RP-HPLC. The arachidonyl 5-lipoxygenase had a pH optimum of 7.5 and was 50% maximally active at a Ca2+ concentration of 0.05 mM; the Km for production of 5-HPETE/5-HETE from arachidonic acid was 12.2 +/- 4.5 microM (mean +/- S.D., n = 3), and the Vmax was 2.8 +/- 0.9 nmol/min X mg protein (mean +/- S.D., n = 3). The omega-6 linoleic lipoxygenase had a pH optimum of 6.5 and was 50% maximally active at a Ca2+ concentration of 0.1 mM in the presence of 5 mM EGTA. When the arachidonyl 5-lipoxygenase and the omega-6 lipoxygenase were separated by DEAE-Sephadex ion exchange chromatography, the omega-6 lipoxygenase exhibited a Km of 77.2 microM and a Vmax of 9.5 nmol/min X mg protein (mean, n = 2) for conversion of linoleic acid to 13-OOH/13-OH linoleic acid and a Km of 63.1 microM and a Vmax of 5.3 nmol/min X mg protein (mean, n = 2) for formation of 15-HPETE/15-HETE from arachidonic acid.  相似文献   

17.
Characteristics of acyl-coenzyme A (acyl-CoA):steroid acyltransferase from the digestive gland of the oyster Crassostrea virginica were determined by using estradiol (E2) and dehydroepiandrosterone (DHEA) as substrates. The apparent Km and Vmax values for esterification of E2 with the six fatty acid acyl-CoAs tested (C20:4, C18:2, C18:1, C16:1, C18:0, and C16:0) were in the range of 9-17 microM E2 and 35-74 pmol/min/mg protein, respectively. Kinetic parameters for esterification of DHEA (Km: 45-120 microM; Vmax: 30-182 pmol/min/mg protein) showed a lower affinity of the enzyme for this steroid. Formation of endogenous fatty acid esters of steroids by microsomes of digestive gland and gonads incubated in the presence of ATP and CoA was assessed, and at least seven E2 fatty acid esters and five DHEA fatty acid esters were observed. Some peaks eluted at the same retention times as palmitoleoyl-, linoleoyl-, oleoyl/palmitoyl-, and stearoyl-E2; and palmitoleoyl-, oleoyl/palmitoyl-, and stearoyl-DHEA. The same endogenous esters, although in different proportions, were produced by gonadal microsomes. The kinetic parameters for both E2 (Km: 10 microM; Vmax: 38 pmol/min/mg protein) and DHEA (Km: 61 microM; Vmax: 60 pmol/min/mg protein) were similar to those obtained in the digestive gland. Kinetic parameters obtained are similar to those observed in mammals; thus, fatty acid esterification of sex steroids appears to be a well-conserved conjugation pathway during evolution.  相似文献   

18.
The transport of 2-oxoisocaproate into isolated hepatocytes and liver mitochondria of rat was studied using [U-14C]2-oxoisocaproate and the silicone oil filtration procedure. 2-Oxoisocaproate uptake by hepatocytes was composed of: rapid adsorption, unmediated diffusion and carrier-mediated transport. The carrier-mediated transport was strongly inhibited by 4,4'-diisothiocyano-2,2'-stilbenedisulphonic acid and p-chloromercuribenzoate, was less sensitive to alpha-cyano-4-hydroxycinnamate and insensitive to p-chloromercuriphenylsulphonate. Other 2-oxo acids: pyruvate, 2-oxoisovalerate and 2-oxo-3-methylvalerate, were also inhibitory. The kinetic parameters of the carrier-mediated transport were Km 30.6 mM and Vmax 23.4 nmol/min per mg wet wt, at 37 degrees C. It is concluded that at its low, physiological, concentration, 2-oxoisocaproate penetrates the hepatocyte membrane mainly by unmediated diffusion. The uptake of 2-oxoisocaproate by isolated liver mitochondria was partly inhibited by alpha-cyano-4-hydroxycinnamate, the inhibitor of mitochondrial monocarboxylate carrier. The remaining uptake was linearly dependent on 2-oxoisocaproate concentration and represented unmediated diffusion. The carrier-mediated transport exhibited the following kinetic parameters: Km 0.47 mM, Vmax 1.0 nmol/min per mg protein at 6 degrees C; and Km 0.075 mM and Vmax about 8 nmol/min per mg protein at 37 degrees C.  相似文献   

19.
The mouse Na+/taurocholate cotransporting polypeptide transiently expressed in COS-7 cells caused sodium-dependent uptake of [3H]taurocholic acid with Km and Vmax values of 18 microM and 102 pmol/mg protein/min, respectively. This Km value is comparable to that for rat NTCP and higher than that for human NTCP. Substrate specificity was evaluated by measuring inhibitory effects of unlabeled bile acids on [3H]taurocholic acid transport.  相似文献   

20.
Adenosine transport has been further characterized in rat renal brush-border membranes (BBM). The uptake shows two components, one sodium-independent and one sodium-dependent. Both components reflect, at least partly, translocation via a carrier mechanism, since the presence of adenosine inside the vesicles stimulates adenosine uptake in the presence as well as in the absence of sodium outside the vesicles. The sodium-dependent component is saturable (Km adenosine = 2.9 microM, Vmax = 142 pmol/min per mg protein) and is abolished at low temperatures. The sodium-independent uptake has apparently two components: one saturable (Km = 4-10 microM, Vmax = 174 pmol/min per mg protein) and one non-saturable (Vmax = 3.4 pmol/min per mg protein, Km greater than 2000 microM). Inosine, guanosine, 2-chloroadenosine and 2'-deoxyadenosine inhibit the sodium-dependent and -independent transport, as shown by trans-stimulation experiments, probably because of translocation via the respective transporter. Uridine and dipyridamole inhibited only the sodium-dependent uptake. Other analogs of adenosine showed no inhibition. The kinetic parameters of the inhibitors of the sodium-dependent component were further investigated. Inosine was the most potent inhibitor with a Ki (1.9 microM) less than the Km of adenosine. This suggests a physiological role for the BBM ecto-adenosine deaminase (enzyme which extracellularly converts adenosine to inosine), balancing the amount of nucleoside taken up as adenosine or inosine by the renal proximal tubule cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号