首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In the first report in this series we presented dendrograms based on 152 individual proteins of the EF-hand family. In the second we used sequences from 228 proteins, containing 835 domains, and showed that eight of the 29 subfamilies are congruent and that the EF-hand domains of the remaining 21 subfamilies have diverse evolutionary histories. In this study we have computed dendrograms within and among the EF-hand subfamilies using the encoding DNA sequences. In most instances the dendrograms based on protein and on DNA sequences are very similar. Significant differences between protein and DNA trees for calmodulin remain unexplained. In our fourth report we evaluate the sequences and the distribution of introns within the EF-hand family and conclude that exon shuffling did not play a significant role in its evolution.  相似文献   

2.
Summary The relationships among 153 EF-hand (calcium-modulated) proteins of known amino acid sequence were determined using the method of maximum parsimony. These proteins can be ordered into 12 distinct subfamilies-calmodulin, troponin C, essential light chain of myosin, regulatory light chain, sarcoplasmic calcium binding protein, calpain, aequorin,Strongylocentrotus purpuratus ectodermal protein, calbindin 28 kd, parvalbumin, -actinin, and S100/intestinal calcium-binding protein. Eight individual proteins-calcineurin B fromBos, troponin C fromAstacus, calcium vector protein fromBranchiostoma, caltractin fromChlamydomonas, cell-division-cycle 31 gene product fromSaccharomyces, 10-kd calcium-binding protein fromTetrahymena, LPS1 eight-domain protein fromLytechinus, and calcium-binding protein fromStreptomyces—are tentatively identified as unique; that is, each may be the sole representative of another subfamily. We present dendrograms showing the relationships among the subfamilies and uniques as well as dendrograms showing relationships within each subfamily.The EF-hand proteins have been characterized from a broad range of organismal sources, and they have an enormous range of function. This is reflected in the complexity of the dendrograms. At this time we urge caution in assigning a simple scheme of gene duplications to account for the evolution of the 600 EF-hand domains of known sequence.  相似文献   

3.
Summary In the first report in this series we described the relationships and evolution of 152 individual proteins of the EF-hand subfamilies. Here we add 66 additional proteins and define eight (CDC, TPNV, CLNB, LPS, DGK, 1 F8, VIS, TCBP) new subfamilies and seven (CAL, SQUD, CDPK, EFH5, TPP, LAV, CRGP) new unique proteins, which we assume represent new subfamilies.The main focus of this study is the classification of individual EF-hand domains. Five subfamilies—calmodulin, troponin C, essential light chain, regulatory light chain, CDC31/caltractin-and three uniques—call, squidulin, and calcium-dependent protein kinase-are congruent in that all evolved from a common four-domain precursor. In contrast calpain and sarcoplasmic calcium-binding protein (SARC) each evolved from its own one-domain precursor. The remaining 19 subfamilies and uniques appear to have evolved by translocation and splicing of genes encoding the EF-hand domains that were precursors to the congruent eight and to calpain and to SARC.The rates of evolution of the EF-hand domains are slower following formation of the subfamilies and establishment of their functions. Subfamilies are not readily classified by patterns of calcium coordination, interdomain linker stability, and glycine and proline distribution. There are many homoplasies indicating that similar variants of the EF-hand evolved by independent pathways.Offprint requests to: R. H. Kretsinger  相似文献   

4.
Calcium vector protein (CaVP) is an EF-hand Ca(2+)-binding protein, which is unique to the protochordate, amphioxus. CaVP is supposed to act as a Ca(2+) signal transductor, but its exact function remains unknown. Not only its function but also its exact evolutionary relationship to other Ca(2+)-binding proteins is unclear. To investigate the evolution of CaVP, we have determined the complete sequences of CaVP cDNAs from two amphioxus species, Branchiostoma lanceolatum and B. floridae, whose open reading frame cDNA and amino acid sequences show 96.5 and 98.2% identity, respectively. We have also elucidated the structure of the gene of B. floridae CaVP, which is made up of seven exons and six introns. The positions of four of the six introns (introns 1, 2, 3, and 5) are identical with those of calmodulin, troponin C, and the Spec protein of the sea urchin. These latter proteins belong to the so-called troponin C superfamily (TnC superfamily) and thus CaVP likely also belongs to this family. Intron 6 is positioned in the 3' noncoding region and is unique to CaVP, so it may represent a landmark of the CaVP lineage only. The position of intron 4 is not conserved in the genes of the TnC superfamily or CaVP, and seems to result from either intron sliding or the addition of an intron (randomly inserted into or close to domain III) to the genes of the TnC superfamily during their evolution.  相似文献   

5.
Many genes for calmodulin-like domain protein kinases (CDPKs) have been identified in plants and Alveolate protists. To study the molecular evolution of the CDPK gene family, we performed a phylogenetic analysis of CDPK genomic sequences. Analysis of introns supports the phylogenetic analysis; CDPK genes with similar intron/exon structure are grouped together on the phylogenetic tree. Conserved introns support a monophyletic origin for plant CDPKs, CDPK-related kinases, and phosphoenolpyruvate carboxylase kinases. Plant CDPKs divide into two major branches. Plant CDPK genes on one branch share common intron positions with protist CDPK genes. The introns shared between protist and plant CDPKs presumably originated before the divergence of plants from Alveolates. Additionally, the calmodulin-like domains of protist CDPKs have intron positions in common with animal and fungal calmodulin genes. These results, together with the presence of a highly conserved phase zero intron located precisely at the beginning of the calmodulin-like domain, suggest that the ancestral CDPK gene could have originated from the fusion of protein kinase and calmodulin genes facilitated by recombination of ancient introns. Received: 11 July 2000 / Accepted: 18 April 2001  相似文献   

6.
Target selectivity in EF-hand calcium binding proteins   总被引:9,自引:0,他引:9  
EF-hand calcium binding proteins have remarkable sequence homology and structural similarity, yet their response to binding of calcium is diverse and they function in a wide range of biological processes. Knowledge of the fine-tuning of EF-hand protein sequences to optimize specific biochemical properties has been significantly advanced over the past 10 years by determination of atomic resolution structures. These data lay the foundation for addressing how functional selectivity is generated from a generic ionic signal. This review presents current ideas about the structural mechanisms that provide the selectivity of different EF-hand proteins for specific cellular targets, using S100 and calmodulin family proteins to demonstrate the critical concepts. Three factors contribute significantly to target selectivity: molecular architecture, response to binding of Ca(2+) ions, and the characteristics of target binding surfaces. Comparisons of calmodulin and S100 proteins provide insights into the role these factors play in facilitating the variety of binding configurations necessary for recognizing a diverse set of targets.  相似文献   

7.
A DNA sequence encoding a protein with predicted EF-hand and dynein light chain binding domains was identified in a Fasciola hepatica EST library. Sequence analysis of the encoded protein revealed that the most similar known protein was the Fasciola gigantica protein FgCaBP3 and so this newly identified protein was named FhCaBP3. Molecular modelling of FhCaBP3 predicted a highly flexible N-terminal region, followed by a domain containing two EF-hand motifs the second of which is likely to be a functioning divalent ion binding site. The C-terminal domain of the protein contains a dynein light chain like region. Interestingly, molecular modelling predicts that calcium ion binding to the N-terminal domain destabilises the β-sheet structure of the C-terminal domain. FhCaBP3 can be expressed in, and purified from, Escherichia coli. The recombinant protein dimerises and the absence of calcium ions appeared to promote dimerisation. Native gel shift assays demonstrated that the protein bound to calcium and manganese ions, but not to magnesium, barium, zinc, strontium, nickel, copper or cadmium ions. FhCaBP3 interacted with the calmodulin antagonists trifluoperazine, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide and chlorpromazine as well as the myosin regulatory light chain-binding drug praziquantel. Despite sequence and structural similarities to other members of the same protein family from F. hepatica, FhCaBP3 has different biochemical properties to the other well characterised family members, FH22 and FhCaBP4. This suggests that each member of this trematode calcium-binding family has discrete functional roles within the organism.  相似文献   

8.
Structure of a gene for rat calmodulin   总被引:6,自引:0,他引:6  
The structural organization of the entire rat calmodulin gene was determined by cloning and sequencing overlapping genomic and cDNA clones from rat genomic and brain cDNA libraries. The intron/exon organization was determined by direct comparison of these sequences. Rat calmodulin gene is 9000 bases long and consisted of six exons interrupted by introns of variable sizes. The first intron separates the initiation codon (ATG) from the coding region of the protein. Three out of four intron/exon junctions in the coding region reside in the middle of calcium binding subdomains and do not correlate with the quarterly divided intramolecular homology of the protein. Their positions exactly coincide with those of the corrected version of chicken calmodulin gene. The rat calmodulin gene harbors a stretch of sequences homologous to a rat middle repetitive "identifier sequence" in the middle of the third intron. Analysis of the immediate 5' upstream region detected a TATA box (TATATATAT) and three C-G boxes (CCGCCC) but not a CAT box (CCAAT). A conserved sequence (GCGCCGCGYCYYGGGGGC) was found at -125 for rat and at -204 for chicken calmodulin genes.  相似文献   

9.
Introns are flanked by a partially conserved coding sequence that forms the immediate exon junction sequence following intron removal from pre-mRNA. Phylogenetic evidence indicates that these sequences have been targeted by numerous intron insertions during evolution, but little is known about this process. Here, we test the prediction that exon junction sequences were functional splice sites that existed in the coding sequence of genes prior to the insertion of introns. To do this, we experimentally identified nine cryptic splice sites within the coding sequence of actin genes from humans, Arabidopsis, and Physarum by inactivating their normal intron splice sites. We found that seven of these cryptic splice sites correspond exactly to the positions of exon junctions in actin genes from other species. Because actin genes are highly conserved, we could conclude that at least seven actin introns are flanked by cryptic splice sites, and from the phylogenetic evidence, we could also conclude that actin introns were inserted into these cryptic splice sites during evolution. Furthermore, our results indicate that these insertion events were dependent upon the splicing machinery. Because most introns are flanked by similar sequences, our results are likely to be of general relevance.  相似文献   

10.
Schizosaccharomyces pombe cells divide by medial fission. One class of cell division mutants (cdc), the late septation mutants, defines four genes: cdc3, cdc4, cdc8, and cdc12 (Nurse, P., P. Thuriaux, and K. Nasmyth. 1976. Mol. & Gen. Genet. 146:167-178). We have cloned and characterized the cdc4 gene and show that the predicted gene product. Cdc4p, is a 141-amino acid polypeptide that is similar in sequence to EF-hand proteins including myosin light chains, calmodulin, and troponin C. Two temperature-sensitive lethal alleles, cdc4-8 and cdc4- 31, accumulate multiple nuclei and multiple improper F-actin rings and septa but fail to complete cytokinesis. Deletion of cdc4 also results in a lethal terminal phenotype characterized by multinucleate, elongated cells that fail to complete cytokinesis. Sequence comparisons suggest that Cdc4p may be a member of a new class of EF-hand proteins. Cdc4p localizes to a ringlike structure in the medial region of cells undergoing cytokinesis. Thus, Cdc4p appears to be an essential component of the F-actin contractile ring. We find that Cdc4 protein forms a complex with a 200-kD protein which can be cross-linked to UTP, a property common to myosin heavy chains. Together these results suggest that Cdc4p may be a novel myosin light chain.  相似文献   

11.
Internal homologies in an amino acid sequence of a protein and in amino acid sequences of two different proteins are examined, using correlation coefficients calculated from the sequences when residues are replaced by various quantitative properties of the amino acids such as hydrophobicity. To improve the signal-noise ratio the average correlation coefficient is used to detect homology because the correlation depends on the property considered. In this way, any sequence repetition in a protein and the extent of the similarity and difference among proteins can be estimated quantitatively. The procedure was applied first to the sequences of proteins which have been assumed on other grounds to contain some internal sequence repetitions, α-tropomyosin from rabbit skeletal muscle, calmodulin from bovine brain, troponin C from skeletal and cardiac muscle, and then to the sequences of calcium binding proteins, calmodulin, troponin C, and L2 light chain of myosin. The results show that α-tropomyosin has a markedly periodic sequence at intervals of multiples of seven residues throughout the whole sequence, and calmodulin and skeletal troponin C contain two homologous sequences, the homology of troponin C being weaker than that of calmodulin. Candidates for the calcium binding regions of both troponin C, calmodulin, and L2 light chain are the homologous parts having a high average correlation coefficient (about 0·5) with respect to the sequences of the CD and EF hand regions of carp parvalbumin. The procedure may be a useful method for searching for homologous segments in amino acid sequences.  相似文献   

12.
We have previously identified a single inhibitory Ca2+-binding site in the first EF-hand of the essential light chain of Physarum conventional myosin (Farkas, L., Malnasi-Csizmadia, A., Nakamura, A., Kohama, K., and Nyitray, L. (2003) J. Biol. Chem. 278, 27399-27405). As a general rule, conformation of the EF-hand-containing domains in the calmodulin family is "closed" in the absence and "open" in the presence of bound cations; a notable exception is the unusual Ca2+-bound closed domain in the essential light chain of the Ca2+-activated scallop muscle myosin. Here we have reported the 1.8 A resolution structure of the regulatory domain (RD) of Physarum myosin II in which Ca2+ is bound to a canonical EF-hand that is also in a closed state. The 12th position of the EF-hand loop, which normally provides a bidentate ligand for Ca2+ in the open state, is too far in the structure to participate in coordination of the ion. The structure includes a second Ca2+ that only mediates crystal contacts. To reveal the mechanism behind the regulatory effect of Ca2+, we compared conformational flexibilities of the liganded and unliganded RD. Our working hypothesis, i.e. the modulatory effect of Ca2+ on conformational flexibility of RD, is in line with the observed suppression of hydrogen-deuterium exchange rate in the Ca2+-bound form, as well as with results of molecular dynamics calculations. Based on this evidence, we concluded that Ca2+-induced change in structural dynamics of RD is a major factor in Ca2+-mediated regulation of Physarum myosin II activity.  相似文献   

13.
The sequences encoding the 5'-ends of three chicken fast-white myosin heavy chain (MHC) genes have been determined. When compared with the sequences of two other MHC genes it is apparent that both the exon and intron positions are conserved. All exon sequences are highly conserved; there is absolute amino acid conservation in the second and third exons. In addition, while the first and third introns diverge among the genes, the second intron is highly conserved between the five. This intron contains a 24-bp sequence that is repeated twice in one of the introns and once in the other four. Analyses indicate that this sequence, which is partially homologous to 7SL RNA, appears to be largely restricted to the MHC gene family. Analysis of the 5'-flanking sequences show that while small homologies are present between some of the genes, they have extensively diverged in this region.  相似文献   

14.
15.
It has been known that isoforms of myosin essential light chain (LC) exhibit the isoform-specific sorting within cardiac myocytes and fibroblasts. In order to analyze which domain of LC is responsible for the sorting, various chimeric cDNA constructs between human nonmuscle isoform (LC3nm) and chicken fast skeletal muscle isoform (LC3f) were generated and expressed in cultured chicken cardiac myocytes. If chimeras contained LC3f sequence at the place that was restricted by BssHII and PstI, they were preferentially sorted to sarcomeres and precisely localized at A-bands, and their incorporation levels into the A-bands were identical with that of the wild type LC3f. However, other chimeras were distributed throughout the cytoplasm like the wild type LC3nm. Comparison of amino acid sequences revealed that 12 amino acids are different between chicken LC3f and human LC3nm in the BssHII-PstI fragment, and these amino acids are located within the second EF-hand of LC. These results indicated that the second EF-hand is responsible for the isoform-specific sorting of LC. Although the second EF-hand is not included in the key contacts with myosin heavy chain, it is supposed that this domain is important for the relative disposition of neighboring domains. Thus, the 12 amino acids in the second EF-hand might play a key role for modulation of overall configuration of LC, thereby influencing the precise association of the key contacts.  相似文献   

16.
17.
18.
Group I self-splicing introns are present in the td, nrdB and sunY genes of bacteriophage T4. We previously reported that whereas the td intron is present in T2, T4 and T6, the nrdB intron is present in T4 only. These studies, which argue in favor of introns as mobile genetic elements, have been extended by defining the distribution of all three T4 introns in a more comprehensive collection of T2, T4 and T6 isolates. The three major findings are as follows: First, all three introns are inconsistently distributed throughout the T-even phage family. Second, different T2 isolates have different intron complements, with T2H and T2L having no detectable introns. Third, the intron open reading frames are inherited or lost as a unit with their respective flanking intron core elements. Furthermore, exon sequences flanking sites where introns are inserted in the T4 td, sunY and nrdB genes were determined for all the different T-even isolates studied. Six of eighteen residues surrounding the junction sequences are identical. In contrast, a comprehensive comparison of exon sequences in intron plus and intron minus variants of the sunY gene indicate that sequence changes are concentrated around the site of intron occurrence. This apparent paradox may be resolved by hypothesizing that the recombination events responsible for intron acquisition or loss require a consensus sequence, while these same events result in sequence heterogeneity around the site.  相似文献   

19.
Calmodulin (CaM) and troponin C (TnC) are the most similar members of EF-hand family and show few differences in the primary structure. Here, we use mutants of troponin that mimic calmodulin and changes in temperature to investigate the factors that determine their specificity as regulatory proteins. Using a double mutant of troponin that resembles calmodulin in lacking both the N-terminal helix and KGK(91-93) we observe a small difference from troponin in binding to the erythrocyte Ca(2+)-ATPase, and an improvement in enzyme activation. A triple mutant, where in addition, the residues 88-90 are replaced with the corresponding sequence from calmodulin is equivalent to calmodulin in maximal activation, and it restores protein ability to increase Ca(2+) affinity for the enzyme. However, this mutant also binds less tightly (1/100) than calmodulin. Remarkably, a decrease in temperature has a more marked effect in protein binding than either mutation, reducing the difference in affinities to 18-fold, but without any improvement in their ability to increase Ca(2+) affinity for the enzyme. Spectroscopic analysis of hydrophobic domain exposure in EF-hand proteins was carried out using 8-anilino-1-naphthalenesulfonic acid (ANS). The probe shows a much higher fluorescence when bound to the complex Ca(4)-calmodulin than to Ca(4)-troponin. Decreasing the temperature exposes additional hydrophobic regions of troponin. Changing the Mg(2+) concentration does not affect their bindings to the enzyme. It is suggested that the requirements for troponin to mimic calmodulin in binding to the target enzyme, and those for activating it, are met by different regions of the protein.  相似文献   

20.
Two thirds of the natural chicken ovomucoid gene has been sequenced, including all exons and the intron sequences surrounding all fourteen intron/ exon junctions. The junction sequences surrounding four of the introns are redundant; however, the sequences surrounding the other three introns contain no redundancies and thus the splicing sites at either end of these three introns are unambiguous. The splicing in all cases conforms to the GT-AG rule. The ovomucoid gene sequence around intron F can be used to predict the cause of an internal deletion polymorphism in the ovomucoid protein, which is an apparent error in the processing of the ovomucoid pre-mRNA. We also compare the structural organization of the ovomucoid gene with the ovomucoid protein sequence to examine theories of the evolution of ovomucoids as well as the origin of intervening sequences. This analysis suggests that the present ovomucoid gene evolved from a primordial ovomucoid gene by two separate intragenic duplications. Furthermore, sequence analyses suggest that introns were present in the primordial ovomucoid gene before birds and mammals diverged, about 300 million years ago. Finally, the positions of the introns within the ovomucoid gene support the theory that introns separate gene segments that code for functional domains of proteins and provide insight on the manner by which eucaryotic genes were constructed during the process of evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号