首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Life history evolution and comparative developmental biology of echinoderms   总被引:3,自引:1,他引:2  
Evolutionary biologists studying life history variation have used echinoderms in experimental, laboratory, and field studies of life history evolution. This focus on echinoderms grew originally from the tradition of comparative embryology, in which echinoderms were central. The tools for obtaining and manipulating echinoderm gametes and larvae were taken directly from comparative embryological research. In addition, the comparative embryologists employed a diverse array of echinoderms, not a few model species, and this diversity has led to a broad understanding of the development, function, and evolution of echinoderm larvae. As a result, this branch of life history evolution has deep roots in comparative developmental biology of echinoderms. Here two main aspects of this relationship are reviewed. The first is a broad range of studies of fertilization biology, dispersal, population genetics, functional morphology, and asexual reproduction in which developmental biologists might take a keen interest because of the historical origins of this research in echinoderm comparative embryology. The second is a similarly broad variety of topics in life history research in which evolutionary biologists require techniques or data from developmental biology in order to make progress on understanding patterns of life history variation among echinoderm species and higher taxa. Both sets of topics provide opportunities for interaction and collaboration.  相似文献   

2.
To investigate the bases for evolutionary changes in developmental mode, we fertilized eggs of a direct-developing sea urchin, Heliocidaris erythrogramma, with sperm from a closely related species, H. tuberculata, that undergoes indirect development via a feeding larva. The resulting hybrids completed development to form juvenile adult sea urchins. Hybrids exhibited restoration of feeding larval structures and paternal gene expression that have been lost in the evolution of the direct-developing maternal species. However, the developmental outcome of the hybrids was not a simple reversion to the paternal pluteus larval form. An unexpected result was that the ontogeny of the hybrids was distinct from either parental species. Early hybrid larvae exhibited a novel morphology similar to that of the dipleurula-type larva typical of other classes of echinoderms and considered to represent the ancestral echinoderm larval form. In the hybrid developmental program, therefore, both recent and ancient ancestral features were restored. That is, the hybrids exhibited features of the pluteus larval form that is present in both the paternal species and in the immediate common ancestor of the two species, but they also exhibited general developmental features of very distantly related echinoderms. Thus in the hybrids, the interaction of two genomes that normally encode two disparate developmental modes produces a novel but harmonious ontongeny.  相似文献   

3.
Modified interactions among developmental regulatory genes and changes in their expression domains are likely to be an important part of the developmental basis for evolutionary changes in morphology. Although developmental regulatory genes are now being studied in an increasing number of taxa, there has been little attempt to analyze the resulting data within an explicit phylogenetic context. Here we present comparative analyses of expression data from regulatory genes in the phylum Echinodermata, considering the implications for understanding both echinoderm evolution as well as the evolution of regulatory genes in general. Reconstructing the independent evolutionary histories of regulatory genes, their expression domains, their developmental roles, and the structures in which they are expressed reveals a number of distinct evolutionary patterns. A few of these patterns correspond to interpretations common in the literature, whereas others have received little prior mention. Together, the analyses indicate that the evolution of echinoderms involved: (1) the appearance of many apomorphic developmental roles and expression domains, some of which have plesiomorphic bilateral symmetry and others of which have apomorphic radial symmetry or left-right asymmetry; (2) the loss of some developmental roles and expression domains thought to be plesiomorphic for Bilateria; and (3) the retention of some developmental roles thought to be plesiomorphic for Bilateria, although with modification in expression domains. Some of the modifications within the Echinodermata concern adult structures; others, transient larval structures. Some changes apparently appeared early in echinoderm evolution (> 450 Ma), whereas others probably happened more recently (< 50 Ma). Cases of likely convergence in expression domains suggest caution when using developmental regulatory genes to make inferences about homology among morphological structures of distantly related taxa.  相似文献   

4.
5.
Phylogenetic analysis has led to significant insights into the evolution of early life-history stages of marine invertebrates. Although echinoderms have been a major focus, developmental and phylogenetic information are relatively poor for ophiuroids, the most species-rich echinoderm class. We used DNA sequences from two mitochondrial genes to develop a phylogenetic hypothesis for 14 brittlestar species in the genus Macrophiothrix (Family Ophiotrichidae). Species are similar in adult form and ecology, but have diverse egg sizes and modes of larval development. In particular, two species have rare larval forms with characteristics that are intermediate between more common modes of feeding and non-feeding development. We use the phylogeny to address whether intermediate larval forms are rare because the evolution of a simplified morphology is rapid once food is no longer required for development. In support of this hypothesis, branch lengths for intermediate forms were short relative to those for species with highly derived non-feeding forms. The absolute rarity of such forms makes robust tests of the hypothesis difficult.  相似文献   

6.
Over the course of evolution, the acquisition of novel structures has ultimately led to wide variation in morphology among extant multicellular organisms. Thus, the origins of genetic systems for new morphological structures are a subject of great interest in evolutionary biology. The larval skeleton is a novel structure acquired in some echinoderm lineages via the activation of the adult skeletogenic machinery. Previously, VEGF signaling was suggested to have played an important role in the acquisition of the larval skeleton. In the present study, we compared expression patterns of Alx genes among echinoderm classes to further explore the factors involved in the acquisition of a larval skeleton. We found that the alx1 gene, originally described as crucial for sea urchin skeletogenesis, may have also played an essential role in the evolution of the larval skeleton. Unlike those echinoderms that have a larval skeleton, we found that alx1 of starfish was barely expressed in early larvae that have no skeleton. When alx1 overexpression was induced via injection of alx1 mRNA into starfish eggs, the expression patterns of certain genes, including those possibly involved in skeletogenesis, were altered. This suggested that a portion of the skeletogenic program was induced solely by alx1. However, we observed no obvious external phenotype or skeleton. We concluded that alx1 was necessary but not sufficient for the acquisition of the larval skeleton, which, in fact, requires several genetic events. Based on these results, we discuss how the larval expression of alx1 contributed to the acquisition of the larval skeleton in the putative ancestral lineage of echinoderms.  相似文献   

7.
Of the major deuterostome groups, the echinoderms with their multiple forms and complex development are arguably the most mysterious. Although larval echinoderms are bilaterally symmetric, the adult body seems to abandon the larval body plan and to develop independently a new structure with different symmetries. The prevalent pentamer structure, the asymmetry of Lovén's rule and the variable location of the periproct and madrepore present enormous difficulties in homologizing structures across the major clades, despite the excellent fossil record. This irregularity in body forms seems to place echinoderms outside the other deuterostomes. Here I propose that the predominant five-ray structure is derived from a hexamer structure that is grounded directly in the structure of the bilaterally symmetric larva. This hypothesis implies that the adult echinoderm body can be derived directly from the larval bilateral symmetry and thus firmly ranks even the adult echinoderms among the bilaterians. In order to test the hypothesis rigorously, a model is developed in which one ray is missing between rays IV-V (Lovén's schema) or rays C-D (Carpenter's schema). The model is used to make predictions, which are tested and verified for the process of metamorphosis and for the morphology of recent and fossil forms. The theory provides fundamental insight into the M-plane and the Ubisch', Lovén's, and Carpenter's planes and generalizes them for all echinoderms. The theory also makes robust predictions about the evolution of the pentamer structure and its developmental basis.  相似文献   

8.
Origins of the other metazoan body plans: the evolution of larval forms   总被引:1,自引:0,他引:1  
Bilaterian animal body plan origins are not solely about adult forms. Most animals have larvae with body plans, ontogenies and ecologies distinct from adults. There are two primary hypotheses for larval origins. The first hypothesis suggests that the first animals were small pelagic forms similar to modern larvae, with adult bilaterian body plans evolved subsequently. The second hypothesis suggests that adult bilaterian body plans evolved first and that larval body plans arose by interpolation of features into direct-developing ontogenies. The two hypotheses have different consequences for understanding parsimony in evolution of larvae and of developmental genetic mechanisms. If primitive metazoans were like modern larvae and distinct adult forms evolved independently, there should be little commonality of patterning genes among adult body plans. However, sharing of patterning genes is observed. If larvae arose by co-option of adult bilaterian-expressed genes into independently evolved larval forms, larvae may show morphological convergence, but with distinct patterning genes, and this is observed. Thus, comparative studies of gene expression support independent origins of larval features. Precambrian and Cambrian embryonic fossils are also consistent with direct development of the adult as being primitive, with planktonic larvae arising during the Cambrian. Larvae have continued to co-opt genes and evolve new features, allowing study of developmental evolution.  相似文献   

9.
Hemichordates, like echinoderms and chordates, are deuterostomes, and study of their developmental biology could shed light on chordate origins. To date, molecular developmental studies in hemichordates have been confined to the enteropneusts or acorn worms. Here, we introduce the developmental biology of the other group of hemichordate, the pterobranchs. Pterobranchs generally live in cold, deep waters; this has hampered studies of this group. However, about 40 years ago, the colonial pterobranchs Rhabdopleura compacta and R. normani were discovered from shallow water, which has facilitated their study. Using Rhabdopleura compacta from south-west England, we have initiated molecular developmental studies in pterobranchs. Here, we outline methods for collecting adults, larvae, and embryos and demonstrate culturing of larvae under laboratory conditions. Given that the larval and adult forms differ from enteropneusts, we suggest that molecular developmental studies of pterobranchs may offer new insights into chordate origins.  相似文献   

10.
Nervous system development in echinoderms has been well documented, especially for sea urchins and starfish. However, that of crinoids, the most basal group of extant echinoderms, has been poorly studied due to difficulties in obtaining their larvae. In this paper, we report nervous system development from two species of crinoids, from hatching to late doliolaria larvae in the sea lily Metacrinus rotundus and from hatching to cystidean stages after settlement in the feather star Oxycomanthus japonicus. The two species showed a similar larval nervous system pattern with an extensive anterior larval ganglion. The ganglion was similar to that in sea urchins which is generally regarded as derived. In contrast with other echinoderm and hemichordate larvae, synaptotagmin antibody 1E11 failed to reveal ciliary band nerve tracts. Basiepithelial nerve cells formed a net-like structure in the M. rotundus doliolaria larvae. In O. japonicus, the larval ganglion was still present 1 day after settlement when the adult nervous system began to appear inside the crown. Stalk nerves originated from the crown and extended down the stalk, but had no connections with the remaining larval ganglion at the base of the stalk. The larval nervous system was not incorporated into the adult nervous system, and the larval ganglion later disappeared. The aboral nerve center, the dominant nervous system in adult crinoids, was formed at the early cystidean stage, considerably earlier than previously suggested. Through comparisons with nervous system development in other ambulacraria, we suggest the possible nervous system development pattern of the echinoderm ancestor and provide new implications on the evolutionary history of echinoderm life cycles.  相似文献   

11.
There is a classic controversy in zoology over whether the common ancestor of living bilaterian phyla was a benthic animal with a bilaterian body plan, or was a pelagic larva-like animal similar to what we see today in the primary larvae of indirect-developing bilaterians. We examine the current larva-like adult hypothesis, and present an alternate model for the evolution of complex life histories by intercalation of larval features into the ontogeny of an ancestral direct-developing bilaterian. This gradual accumulation of larval features results in a developmental regulatory program that produces a larva distinct in body plan from the adult. The evolution of a rapid and complete metamorphosis is made possible by the convergent evolution of set aside cells in the final stages of the emergence of indirect developing larval forms. Although convergences abound either hypothesis for the evolution of developmental pathways and life histories, the bilaterian first hypothesis is consistent with all stages of evolution of a complex life history being selectively advantageous, with the rapid evolution of larval forms, and with the frequent co-option of genes from the adult phase of the life cycle prevalent in the evolution of embryos and larvae.  相似文献   

12.
Abstract. The oral surface and mouth of juvenile asteroids and echinoids with indirect development forms on the lower left side of the larval body, thus establishing a new axis of body symmetry. In contrast, the juvenile mouth of ophiuroids and holothuroids develops from the larval one, and the larval and adult body axes roughly coincide. Explaining how two such disparate modes of development arose in evolution has been a perennial problem for echinoderm biologists, but recent observations on larval budding in asteroids may provide an answer. The juvenile mouth of asteroids forms near the base of the left posterolateral lobe. The posterolateral lobes are also the principal site of bud formation in asteroid larvae that propagate asexually, and buds form mouths. By accelerating the development of oral and ectodermal structures belonging to the bud, and combining these with internal organs derived from the parent larva, a composite individual could be constructed with the same orientation and positioning as the juvenile rudiment in asteroids. Whether this also explains the position of the juvenile rudiment in echinoids is a more complex question, depending in part on whether asexual propagation is derived, and restricted to asteroids and ophiuroids, or is more primitive and hence widespread among stem echinoderms.  相似文献   

13.
The evolution of life cycles involves transitions between discrete states in one or more of the characters that comprise a developmental pattern. In this paper, we examine three of the major life cycle characters and the states for these characters. Using examples from echinoderms, we discuss the evolutionary transitions that have occurred in the type of morphogenesis, developmental habitat, and mode of nutrition during development. We evaluate the functional requirements associated with these transitions to infer the likelihood (frequency or rapidity) of change in a given character and of biases in the polarity of character state transitions. Using comparisons of closely related species, we evaluate the change between states in one character for dependence on the state of, or correlated changes in, other characters. Based on our analysis of congeneric species that differ in developmental habitat, we conclude that the transition between pelagic and benthic development is an ecological change that is independent of changes in morphogenesis and should be reversible. In contrast, the transition from feeding to nonfeeding development has been considered to be irreversible because it involves marked changes in larval morphology. We re-examine the transition between different modes of larval nutrition in light of recent studies that show that there exists a continuum of nutritional strategies between planktotrophy and lecithotrophy. This continuum is largely determined by variation in maternal investment and does not involve alterations in larval morphology. We suggest that the boundary between planktotrophy and lecithotrophy is frequently crossed and that this transition is reversible. Ecological changes represent the crossing of a functional threshold. Only after crossing the threshold, do larvae experience qualitatively different selective pressures that can lead to subsequent changes in morphology and development. Two different changes have occurred in the type of morphogenesis: the simplification of larval morphology that is associated with obligate (nonfeeding) lecithotrophy and the loss of the larval body plan in the evolution from indirect to direct development. It is the modification of morphology independent of the ecological changes that requires alterations in developmental processes, constrains evolutionary options, imposes irreversibility, and establishes the discrete nature of larval patterns in marine invertebrates.  相似文献   

14.
Phylogenies based on morphological or molecular characters have been used to provide an evolutionary context for analysis of larval evolution. Studies of gastropods, bivalves, tunicates, sea stars, sea urchins, and polychaetes have revealed massive parallel evolution of similar larval forms. Some of these studies were designed to test, and have rejected, the species selection hypothesis for evolutionary trends in the frequency of derived larvae or life history traits. However, the lack of well supported models of larval character evolution leave some doubt about the quality of inferences of larval evolution from phylogenies of living taxa. Better models based on maximum likelihood methods and known prior probabilities of larval character state changes will improve our understanding of the history of larval evolution.  相似文献   

15.
SUMMARY Echinoderms have a unique ontogeny and adult structure, and, among Bilateria, are the phylum that has diverged most radically in appearance from the ancestral body plan. Embryology and gene expression studies suggest how this transformation may have occurred while paleontological data provide direct evidence for the order in which these events took place. Comparing echinoderm ontogeny and genetic developmental signalling patterns with those of their sister group, the hemichordates, suggests that an evolutionary switch from posterior facultative to anterior obligate larval attachment proved the critical trigger. This necessitated introduction of a phase of torsion in development to bring the mouth into a more appropriate orientation for filter feeding, which in turn rotated the axis of the developing adult 90° out of alignment with Hox and other body patterning genes. As a result the developing echinoderm rudiment came to receive a complex mosaic of anterior–posterior signalling, and extensive co-option of signalling pathways was able to take place. The fossil record shows that early (pre-radiate) echinoderms were much more hemichordate-like, with a muscular post-anal stalk and facultative attachment, and probably developed maintaining continuity with larval axes, as in hemichordates, although left-right asymmetry was more highly developed. Anterior attachment and torsion, however, were clearly part of the developmental pattern of helicoplacoids and (to a much greater extent) in subsequent pentaradiate forms.  相似文献   

16.
The genus Cyclope Risso, 1826 (family Nassariidae) has appeared in the fossil record since the Pliocene. Although it is still found today, the teleoconch morphology has never undergone modification, despite the fact that the protoconch morphologies of fossils (multispiral) and living forms (paucispiral) are different. They vary in their embryological and larval development and, hence, are two different species: C. migliorinii (Bevilacqua, 1928), the fossil species, and C. neritea (Linnaeus, 1758), the living species. We discuss the morphologic modifications in the evolution of this genus: the speciation that leads to its appearance and the speciation driving the Pliocene species to the living one. The order and the direction of these changes are based on phylogenetic analysis. No intermediate forms have been found showing a gradual morphological change that could have been worked by natural selection. Our analysis takes as the origin of the morphological novelties the genetic modifications in the ontogenetic processes which resulted in rapid and important phenotypic changes. Both speciation processes are sympatric cladogenetic. The changes that determine the appearance of the genus affect only the teleoconch, not the larval development. The modifications that lead from one species to the other, within the genus Cycope, affect the larval development exclusively. This points to a certain disconnection between the development of the embryo-larval phase and the young-adult formation, such that evolutionary processes could have occurred independently in different ontogenetic stages. The influence of larval ecology in relation to extinction of the ancestor and persistence of the derived species is also analysed. We hypothesize that climatic fluctuations may have affected the planktonic larvae of the fossil species, driving it to extinction. The living species, developing without the planktonic phase, would have resisted these climatic changes. We consider that the mechanisms described as drivers of the evolution of this genus can be of more general validity in prosobranch gastropods.  相似文献   

17.
We describe the expression of the homeobox genes orthodenticle (Otx) and distal-less (Dlx) during the larval development of seven species representing three classes of echinoderms: Holothuroidea, Asteroidea, and Echinoidea. Several expression domains are conserved between species within a single class, including Dlx expression within the brachiolar arms of asteroid larvae and Otx expression within the ciliated bands of holothuroid larvae. Some expression domains are apparently conserved between classes, such as the expression of Dlx within the hydrocoel (left mesocoel) in all three classes. However, several substantial differences in expression domains among taxa were also evident for both genes. Some autapomorphic (unique derived) features of gene expression are phylogenetically associated with autapomorphic structures, such as Dlx expression within the invaginating rudiment of euechinoids. Other autapomorphic gene expression domains are associated with evolutionary shifts in life history from feeding to nonfeeding larval development, such as Otx expression within the ciliated bands of a nonfeeding holothuroid larva. Similar associations between evolutionary changes in morphology and life history mode with changes in regulatory gene expression have also been observed in arthropods, urochordates, and chordates. We predict that recruitment of regulatory genes to a new developmental role is commonly associated with evolutionary changes in morphology and may be particularly common in clades with complex life cycles and diversity of life history modes. Caution should be used when making generalizations about gene expression and function based on a single species, which may not accurately reflect developmental processes and life histories of the phyla to which it belongs.  相似文献   

18.
19.
SYNOPSIS. Nonfeeding larval forms of echinoderms are believedto have evolved repeatedly from feeding larval forms, and thesetransformations usually result in major shifts in morphogenesis.Current hypotheses on form change invoke relaxation of stabilizingselection on traits that functionin feeding, coupled with selectionfor rapid development of juvenile traits. However, comparativeevidence from 51 species of nonfeeding larvae, representing19 independent origins, suggests that body form, patterns ofciliation, and possibly buoyancy reflect functional requirementsfor maintenance of swimming performance. Nonfeeding larvae withbody lengths less than 600 µm usually have several transverseciliated bands, while those with body lengths greater than 800µm usually have uniform ciliation. A preliminary modelwhich compares estimated drag and buoyancy forces with ciliarypropulsive forces predicts that bands of simple cilia do notproduce sufficient propulsive forces to permit swimming in largerlarvae. For larger larvae, increases in areal coverage of ciliamay be required to produce propulsive forces sufficient to opposedrag and buoyancy forces and permit movement. For these largerlarvae, estimates of water velocities at the tips of uniformarrays of cilia are well below the upper limits of water movementsby cilia of echinoderms. Functional constraints on nonfeedinglarval forms should be considered, along with (above mentioned)current hypotheses, in explanations of morphogenetic changesassociated with transition from feeding to nonfeeding larvaldevelopment.  相似文献   

20.
Among 381 specimens of Cambrian stalked echinoderms from eastern Guizhou, China examined, several slabs ( n  = 19) contain either dumbbell-shaped or v-shaped echinoderm clusters. Four slabs of Globoeocrinus globules Zhao, Parsley & Peng, 2008 from the middle-upper part (Cambrian Series 3 portion) of the Kaili Formation are prepared to reveal the attachment sites. Articulated gogiid echinoderms are reported to be attached to both sides of inarticulate (organophosphatic) brachiopods; thus, allowing me to interpret that the larvae of these gogiids were capable of attaching to live benthic brachiopods. This study documents the one of the earliest examples of echinoderms employing secondary tiering, which elevates an organism higher into the benthic boundary layer. Many of the gogiid echinoderm pairs attached to a live brachiopod are similar in size, indicating they were from a single larval spatfall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号