首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
16S rRNA-based fingerprinting techniques allow rapid analyses of overall bacterial community structure but suffer from a lack of phylogenetic information hitherto retrievable from the short 16S rRNA gene sequences obtained from excised bands. An approach is presented that allows nearly complete 16S rRNA gene sequences to be retrieved for abundant components of the bacterial community as obtained by the community fingerprint, i.e. those reflected by major fingerprint bands. This was achieved by designing a pair of highly specific primers derived from the sequence of an excised band. Combined with universal 16S rRNA primers, these specific primers were applied directly to environmental DNA serving as template. This procedure allowed the generation of a nearly complete 16S rRNA gene sequence of the target taxon by specific polymerase chain reaction (PCR) followed by cycle sequencing down to a relative abundance of at least 1.5% of the environmental DNA. The procedure was exemplified for an epsilonproteobacterium related to Thiomicrospira denitrificans occurring in the central Baltic Sea. This approach is based only on PCR without any cloning step involved. It allows focussing on specific target taxa and is thus rather efficient. This approach should be applicable in general to 16S rRNA or 16S rRNA gene-based fingerprinting techniques and their respective environmental DNA.  相似文献   

2.
Since it has been reported that microorganisms can affect painting pigments, Paleolithic painting microbiology deserves attention. The present study is the first report on the bacterial colonization of the valuable Paleolithic paintings in the famous Altamira cave (Spain). One sample taken from a painting area in the Polychromes Hall was analyzed culture-independently. This was the first time microbiologists were allowed to take sample material directly from Altamira paintings. Identification methods included PCR amplification of 16S rRNA genes (16S rDNA) and community fingerprinting by denaturing gradient gel electrophoresis (DGGE). The applied approach gave insight into a great bacterial taxonomic diversity, and allowed the detection of unexpected and unknown bacteria with potential effects on the conservation of the painting. Regarding the number of 29 visible DGGE bands in the community fingerprint, the numbers of analyzed clones described about 72% of the phylogenetic diversity present in the sample. Thirty-eight percent of the sequences analyzed were phylogenetically most closely related to cultivated bacteria, while the majority (62%) were most closely related to environmental 16S rDNA clones. Bacteria identified in Altamira were related with sequence similarities between 84.8 and 99.4% to members of the cosmopolitan Proteobacteria (52.3%), to members of the Acidobacterium division (23.8%), Cytophaga/Flexibacter/Bacteroides phylum (9.5%), green non-sulfur bacteria (4.8%), Planctomycetales (4.8%) and Actinobacteria (4.8%). The high number of clones most closely related to environmental 16S rDNA clones showed the broad spectrum of unknown and yet to be cultivated bacteria in Altamira cave.  相似文献   

3.
4.
Cultivation independent analyses of soil microbial community structures are frequently used to describe microbiological soil characteristics. This approach is based on direct extraction of total soil DNA followed by PCR amplification of selected marker genes and subsequent genetic fingerprint analyses. Semi-automated genetic fingerprinting techniques such as terminal restriction fragment length polymorphism (T-RFLP) and ribosomal intergenic spacer analysis (RISA) yield high-resolution patterns of highly diverse soil microbial communities and hold great potential for use in routine soil quality monitoring, when rapid high throughput screening for differences or changes is more important than phylogenetic identification of organisms affected. Our objective was to perform profound statistical analysis to evaluate the cultivation independent approach and the consistency of results from T-RFLP and RISA. As a model system, we used two different heavy metal treated soils from an open top chamber experiment. Bacterial T-RFLP and RISA profiles of 16S rDNA were converted into numeric data matrices in order to allow for detailed statistical analyses with cluster analysis, Mantel test statistics, Monte Carlo permutation tests and ANOVA. Analyses revealed that soil DNA-contents were significantly correlated with soil microbial biomass in our system. T-RFLP and RISA yielded highly consistent and correlating results and both allowed to distinguish the four treatments with equal significance. While RISA represents a fast and general fingerprinting method of moderate cost and labor intensity, T-RFLP is technically more demanding but offers the advantage of phylogenetic identification of detected soil microorganisms. Therefore, selection of either of these methods should be based on the specific research question under investigation.  相似文献   

5.
AIM: To evaluate the rpoB gene as a biomarker for PCR-DGGE microbial analyses using soil DNA from the Cerrado, Brazil. METHODS: DNA extraction from soil was followed by Polymerase Chain Reaction (PCR) amplification of rpoB and 16S rRNA genes. PCR products were compared by Denaturing Gradient Gel Electrophoresis (DGGE) to compare gene/community profiles. RESULTS: The rpoB DGGE profiles comprised fewer bands than the 16S rDNA profiles and were easier to delineate and therefore to analyse. Comparison of the community profiles revealed that the methods were complementary. CONCLUSIONS, SIGNIFICANCE AND IMPACT OF THE STUDY: The gene for the beta subunit of the RNA polymerase, rpoB, is a single copy gene unlike 16S rDNA. Multiple copies of 16S rRNA genes in bacterial genomes complicate diversity assessments made from DGGE profiles. Using the rpoB gene offers a better alternative to the commonly used 16S rRNA gene for microbial community analyses based on DGGE.  相似文献   

6.
Culture-independent DNA fingerprints are commonly used to assess the diversity of a microbial community. However, relating species composition to community profiles produced by community fingerprint methods is not straightforward. Terminal restriction fragment length polymorphism (T-RFLP) is a community fingerprint method in which phylogenetic assignments may be inferred from the terminal restriction fragment (T-RF) sizes through the use of web-based resources that predict T-RF sizes for known bacteria. The process quickly becomes computationally intensive due to the need to analyze profiles produced by multiple restriction digests and the complexity of profiles generated by natural microbial communities. A web-based tool is described here that rapidly generates phylogenetic assignments from submitted community T-RFLP profiles based on a database of fragments produced by known 16S rRNA gene sequences. Users have the option of submitting a customized database generated from unpublished sequences or from a gene other than the 16S rRNA gene. This phylogenetic assignment tool allows users to employ T-RFLP to simultaneously analyze microbial community diversity and species composition. An analysis of the variability of bacterial species composition throughout the water column in a humic lake was carried out to demonstrate the functionality of the phylogenetic assignment tool. This method was validated by comparing the results generated by this program with results from a 16S rRNA gene clone library.  相似文献   

7.
Culture-independent DNA fingerprints are commonly used to assess the diversity of a microbial community. However, relating species composition to community profiles produced by community fingerprint methods is not straightforward. Terminal restriction fragment length polymorphism (T-RFLP) is a community fingerprint method in which phylogenetic assignments may be inferred from the terminal restriction fragment (T-RF) sizes through the use of web-based resources that predict T-RF sizes for known bacteria. The process quickly becomes computationally intensive due to the need to analyze profiles produced by multiple restriction digests and the complexity of profiles generated by natural microbial communities. A web-based tool is described here that rapidly generates phylogenetic assignments from submitted community T-RFLP profiles based on a database of fragments produced by known 16S rRNA gene sequences. Users have the option of submitting a customized database generated from unpublished sequences or from a gene other than the 16S rRNA gene. This phylogenetic assignment tool allows users to employ T-RFLP to simultaneously analyze microbial community diversity and species composition. An analysis of the variability of bacterial species composition throughout the water column in a humic lake was carried out to demonstrate the functionality of the phylogenetic assignment tool. This method was validated by comparing the results generated by this program with results from a 16S rRNA gene clone library.  相似文献   

8.
Characterization of the bacterial community of a zinc-polluted soil.   总被引:4,自引:0,他引:4  
The bacterial community of a zinc-contaminated soil (Maatheide soil in Lommel, Belgium) was studied using cultivation as well as cultivation-independent techniques. Colony-forming units (CFU) were determined by plating on media with or without metals. Dominant isolates were characterized by fatty acid methyl ester analysis (FAME analysis) and PCR fingerprinting using repetitive extragenic palindromic sequences as primers. DNA was directly extracted from soil samples and used as a template for the PCR amplification of the 16S rDNA (8-1511) or a 16S rDNA fragment (968-1401). Clones resulting from cloning the 16S rDNA from soil DNA were sequenced. Temperature gradient gel electrophoresis (TGGE analysis) was performed for 16S rDNA fragments (968-1401) amplified from the dominant isolates, the clones, and the total soil DNA extracted according to two protocols differing in strength of lysis. Total CFU ranged from 10(4) to 10(5)/g soil. The majority of the isolates were identified by FAME analysis as Arthrobacter spp. (18 out of 23). None of the isolates were identified as a Ralstonia eutropha like strain (formerly Alcaligenes eutrophus). Metalloresistant Rastomia eutropha like strains were previously shown to be dominant in the analyzed biotope. Most of the isolates were zinc tolerant but only seven could be considered zinc resistant. Sequences of the 16S rDNA clones obtained from total soil DNA were affiliated with genes of different bacteria such as alpha-proteobacteria, beta-proteobacteria, and the Cytophaga-Flexibacter-Bacteroides group. None of the sequenced clones aligned with the Ralstonia eutropha 16S rRNA gene. TGGE analysis of the 16S rDNA fragments (968-1401) amplified from the dominant strains, the clones, and the total soil DNA showed that isolates and clones represented only a part of the bands present in the TGGE pattern from total DNA. The 968-1401 fragment amplified from all Arthrobacter strains had a similar electrophoretic mobility. This band was seen as a major band in the pattern of DNA extracted from soil using a harsh cell lysis, whereas it did not appear, or appeared only as a weak band, in patterns obtained from soil DNA extracted using gentle lysis. The previously reported predominance of a Ralstonia eutropha like strain in this soil was no longer observed. This may suggest a population replacement by less resistant bacteria, concomitant with a progressive decrease of the zinc toxicity in the Maatheide soil.  相似文献   

9.
Aims: To examine the effect of the pollutant 2,4‐dichlorophenol on DNA‐ and RNA‐based bacterial communities in soil. Methods and Results: Soil was exposed to 100 mg kg?1 of 2,4‐dichlorophenol (2,4‐DCP), and degradation was monitored over 35 days. DNA and RNA were coextracted, and terminal restriction fragment length polymorphism (T‐RFLP) was used to report changes in bacterial communities in response to the presence of the chlorophenol. The phylogenetic composition of the soil during degradation was determined by creating a clone library of amplified 16S rRNA sequences from both DNA and reverse‐transcribed RNA from exposed soil. Resulting clones were sequenced, and putative identities were assigned. Conclusions: A significant difference between active (RNA‐based) and total (DNA‐based) bacterial community structure was observed for both T‐RFLP and phylogenetic analyses in response to 2,4‐DCP, with more pronounced changes seen in RNA‐based communities. Phylogenetic analysis indicated the dominance of Proteobacteria in both profiles. Significance and Impact of the Study: This study describes the response of soil bacterial communities to the addition of the xenobiotic compound 2,4‐DCP, and highlights the importance of including RNA‐based 16S rRNA analysis to complement any molecular study in a perturbed soil.  相似文献   

10.
Summary Methods for monitoring cell line identification and authentication include species-specific immunofluorescence, isoenzyme phenotyping, chromosome analysis, and DNA fingerprinting. Most previous studies of DNA fingerprinting of cell lines have used restriction fragment length polymorphism analysis. In this study, we examined the utility of an alternative and simpler method of cell line DNA fingerprinting—polymerase chain reaction (PCR) amplification of fragment length polymorphisms. Fourteen human cell lines previously found by other methods to be either related or disparate were subjected to DNA fingerprinting by PCR amplification of selected fragment length polymorphism loci. Cell identification patterns by this method were concordant with those obtained by isoenzyme phenotyping and restriction fragment length polymorphism-DNA fingerprinting, and were reproducible within and between assays on different DNA extracts of the same cell line. High precision was achieved with electrophoretic separation of amplified DNA products on high resolution agarose or polyacrylamide gels, and with fragment length polymorphism (FLP) loci-specific “allelic ladders” to identify individual FLP alleles. Determination of the composite fingerprint of a cell line at six appropriately chosen fragment length polymorphism loci should achieve a minimum discrimination power of 0.999. The ability of PCR-based fragment length polymorphism DNA fingerprinting to precisely and accurately identify the alleles of different human cell lines at multiple polymorphic fragment length polymorphism loci demonstrates the feasibility of developing a cell line DNA fingerprint reference database as a powerful additional tool for future cell line identification and authentication.  相似文献   

11.
Comparative analysis of microbial communities in a sequencing batch reactor which performed enhanced biological phosphorus removal (EBPR) was carried out using a cultivation-based technique and 16S rRNA gene clone libraries. A standard PCR protocol and a modified PCR protocol with low PCR cycle was applied to the two clone libraries of the 16S rRNA gene sequences obtained from EBPR sludge, respectively, and the resulting 424 clones were analyzed using restriction fragment length polymorphisms (RFLPs) on 16S rRNA gene inserts. Comparison of two clone libraries showed that the modified PCR protocol decreased the incidence of distinct fragment patterns from about 63% (137 of 217) in the standard PCR method to about 34% (70 of 207) under the modified protocol, suggesting that just a low level of PCR cycling (5 cycles after 15 cycles) can significantly reduce the formation of chimeric DNA in the final PCR products. Phylogenetic analysis of 81 groups with distinct RFLP patterns that were obtained using the modified PCR method revealed that the clones were affiliated with at least 11 phyla or classes of the domain Bacteria. However, the analyses of 327 colonies, which were grouped into just 41 distinct types by RFLP analysis, showed that they could be classified into five major bacterial lineages: alpha, beta, gamma- Proteobacteria, Actinobacteria, and the phylum Bacteroidetes, which indicated that the microbial community yielded from the cultivation-based method was still much simpler than that yielded from the PCR-based molecular method. In this study, the discrepancy observed between the communities obtained from PCR-based and cultivation-based methods seems to result from low culturabilities of bacteria or PCR bias even though modified culture and PCR methods were used. Therefore, continuous development of PCR protocol and cultivation techniques is needed to reduce this discrepancy.  相似文献   

12.
An arbitrary primed community PCR fingerprinting technique based on capillary electrophoresis was developed to study maple sap microbial community characteristics among 19 production sites in Québec over the tapping season. Presumptive fragment identification was made with corresponding fingerprint profiles of bacterial isolate cultures. Maple sap microbial communities were subsequently compared using a representative subset of 13 16S rRNA gene clone libraries followed by gene sequence analysis. Results from both methods indicated that all maple sap production sites and flow periods shared common microbiota members, but distinctive features also existed. Changes over the season in relative abundance of predominant populations showed evidence of a common pattern. Pseudomonas (64%) and Rahnella (8%) were the most abundantly and frequently represented genera of the 2239 sequences analyzed. Janthinobacterium, Leuconostoc, Lactococcus, Weissella, Epilithonimonas and Sphingomonas were revealed as occasional contaminants in maple sap. Maple sap microbiota showed a low level of deep diversity along with a high variation of similar 16S rRNA gene sequences within the Pseudomonas genus. Predominance of Pseudomonas is suggested as a typical feature of maple sap microbiota across geographical regions, production sites, and sap flow periods.  相似文献   

13.
The identification of whitefly species in adult stage is problematic. Morphological differentiation of pupae is one of the better methods for determining identity of species, but it may vary depending on the host plant on which they develop which can lead to misidentifications and erroneous naming of new species. Polymerase chain reaction (PCR) fragment amplified from the mitochondrial cytochrome oxidase I (COI) gene is often used for mitochondrial haplotype identification that can be associated with specific species. Our objective was to compare morphometric traits against DNA barcode sequences to develop and implement a diagnostic molecular kit based on a RFLP‐PCR method using the COI gene for the rapid identification of whiteflies. This study will allow for the rapid diagnosis of the diverse community of whiteflies attacking plants of economic interest in Colombia. It also provides access to the COI sequence that can be used to develop predator conservation techniques by establishing which predators have a trophic linkage with the focal whitefly pest species.  相似文献   

14.
Potato plants showing symptoms suggestive of potato witches’‐broom disease including witches’‐broom, little leaf, stunting, yellowing and swollen shoots formation in tubers were observed in the central Iran. For phytoplasma detection, Polymerase Chain Reaction (PCR) and nested PCR assays were performed using phytoplasma universal primer pair P1/P7, followed by primer pair R16F2n/R16R2. Random fragment length polymorphism analysis of potato phytoplasma isolates collected from different production areas using the CfoI restriction enzyme indicated that potato witches’‐broom phytoplasma isolate (PoWB) is genetically different from phytoplasmas associated with potato purple top disease in Iran. Sequence analysis of the partial 16S rRNA gene amplified by nested PCR indicated that ‘Candidatus Phytoplasma trifolii’ is associated with potato witches’‐broom disease in Iran. This is the first report of potato witches’‐broom disease in Iran.  相似文献   

15.
Nucleic acid-based community fingerprinting methods are valuable tools in microbial ecology, as they offer rapid and robust means to compare large series of replicates and references. To avoid the time-consuming and potentially subjective procedures of peak-based examination, we assessed the possibility to apply direct curve-based data analysis on community fingerprints produced with bacterial length heterogeneity PCR (LH-PCR). The dataset comprised 180 profiles from a 21-week rhizoremediation greenhouse experiment with three treatments and 10 sampling times. Curve-based analysis quantified the progressive effect of the plant (Galega orientalis) and the reversible effect of the contaminant (fuel oil) on bacterial succession. The major observed community shifts were assigned to changes in plant biomass and contamination level by canonical correlation analysis. A novel method to extract relative abundance data from the fingerprint curves for Shannon diversity index revealed contamination to reversibly decrease community complexity. By cloning and sequencing the fragment lengths, recognized to change in time in the averaged LH-PCR profiles, we identified Aquabacterium (Betaproteobacteria) as the putative r-strategic fuel oil degrader, and K-strategic Alphaproteobacteria growing in abundance later in succession. Curve-based community fingerprint analysis can be used for rapid data prescreening or as a robust alternative for the more heavily parameterized peak-based analysis.  相似文献   

16.
The intergenic transcribed spacers (ITS) between the 16S and 23S rRNA genetic loci are frequently used in PCR fingerprinting to discriminate bacterial strains at the species and intraspecies levels. We investigated the molecular nature of polymorphisms in ITS-PCR fingerprinting of low-G+C-content spore-forming bacteria belonging to the genera Bacillus, Brevibacillus, Geobacillus, and Paenibacillus: We found that besides the polymorphisms in the homoduplex fragments amplified by PCR, heteroduplex products formed during PCR between amplicons from different ribosomal operons, with or without tRNA genes in the ITS, contribute to the interstrain variability in ITS-PCR fingerprinting patterns obtained in polyacrylamide-based gel matrices. The heteroduplex nature of the discriminating bands was demonstrated by fragment separation in denaturing polyacrylamide gels, by capillary electrophoresis, and by cloning, sequencing, and recombination of purified short and tRNA gene-containing long ITS. We also found that heteroduplex product formation is enhanced by increasing the number of PCR cycles. Homoduplex-heteroduplex polymorphisms (HHP) in a conserved region, such as the 16S and 23S rRNA gene ITS, allowed discrimination of closely related strains and species undistinguishable by other methods, indicating that ITS-HHP analysis is an easy and reproducible additional tool for strain typing.  相似文献   

17.
Efficient methods for constructing 16S tag amplicon libraries for pyrosequencing are needed for the rapid and thorough screening of infectious bacterial diversity from host tissue samples. Here we have developed a double‐nested PCR methodology that generates 16S tag amplicon libraries from very small amounts of bacteria/host samples. This methodology was tested for 133 kidney samples from the lake whitefish Coregonus clupeaformis (Salmonidae) sampled in five different lake populations. The double‐nested PCR efficiency was compared with two other PCR strategies: single primer pair amplification and simple nested PCR. The double‐nested PCR was the only amplification strategy to provide highly specific amplification of bacterial DNA. The resulting 16S amplicon libraries were synthesized and pyrosequenced using 454 FLX technology to analyse the variation of pathogenic bacteria abundance. The proportion of the community sequenced was very high (Good’s coverage estimator; mean = 95.4%). Furthermore, there were no significant differences of sequence coverage among samples. Finally, the occurrence of chimeric amplicons was very low. Therefore, the double‐nested PCR approach provides a rapid, informative and cost‐effective method for screening fish immunobiomes and most likely applicable to other low‐density microbiomes as well.  相似文献   

18.
Genetic fingerprinting methods, such as denaturing gradient gel electrophoresis (DGGE), are used in microbial ecology for the analysis of mixed microbial communities but are associated with various problems. In the present study we used a new alternative method: denaturing high-performance liquid chromatography (dHPLC). This method was previously shown to work with samples from water and gut flora but had not yet been applied to complex environmental samples. In contrast to other publications dealing with dHPLC, we used a commonly available HPLC system. Samples from different origins (fermentor sludge, compost, and soil), all ecologically significant, were tested, and the 16S rRNA gene was amplified via PCR. After optimization of the HPLC elution conditions, amplicons of pure cultures and mixed microbial populations could be separated successfully. Systematic differentiation was carried out by a cloning approach, since fraction collection of the peaks did not result in satisfactory fragment separation. dHPLC was evaluated as a tool for microbial community analysis on a genetic level and demonstrated major improvements compared to gel-based fingerprinting methods, such as DGGE, that are commonly used in microbial ecology.  相似文献   

19.
Aim: To study genetic diversity of Chromobacterium haemolyticum isolates recovered from a natural tropical lake. Methods and Results: A set of 31 isolates were recovered from a bacterial freshwater community by conventional plating methods and subjected to genetic and phenotypic characterization. The 16S ribosomal RNA (rRNA) gene phylogeny revealed that the isolates were related most closely with C. haemolyticum. In addition to the molecular data, our isolates exhibited strong β‐haemolytic activity, were nonviolacein producers and utilized i‐inositol, d ‐mannitol and d ‐sorbitol in contrast with the other known chromobacteria. Evaluation of the genetic diversity in the 16S rRNA gene, tRNA intergenic spacers (tDNA) and 16S‐23S internal transcribed spacers (ITS) unveiled different levels of genetic heterogeneity in the population, which were also observed with repetitive extragenic palindromic (rep)‐PCR genomic fingerprinting using the BOX‐AR1 primer. tDNA‐ and ITS‐PCR analyses were partially congruent with the 16S rRNA gene phylogeny. The isolates exhibited high resistance to β‐lactamic antibiotics. Conclusion: The population genetic heterogeneity was revealed by 16S rRNA gene sequence, ITS and BOX‐PCR analysis. Significance and Impact of the Study: This study provides for the first time an insight into the genetic diversity of phylogenetically close isolates to C. haemolyticum species.  相似文献   

20.
The analysis of soil fungal communities by molecular fingerprinting and subsequent identification of the underlying populations require the amplification of a phylogenetically informative gene fragment. In this study we tested the reliability and suitability of the previously published fungal primer combination (NS1/FR1-GC) that amplifies almost the entire 18S rRNA gene for the DGGE analysis of fungal communities in soil samples from 36 sites. This direct PCR system failed to amplify the fragment of interest from the total DNA extracted from most of the soils tested. Thus, we developed a new semi-nested PCR system based on the initial amplification of over 1,700 bp of the 18S rRNA gene with a new primer combination, followed by a subsequent amplification with NS1/FR1-GC. By means of the PCR approach developed in this study distinct 18S rRNA gene amplicons could be reproducibly generated for all soil samples. Amplification tests with 101 soil fungal isolates showed that with the new semi-nested system 18S rRNA gene fragments could be obtained from more fungi than with the direct approach. The subsequent DGGE separation of community amplicons resulted in a high resolution and revealed reproducible complex soil fungal communities specific for each site, despite a minor variability between replicates of the same sample. The semi-nested PCR system developed in this study, coupled with DGGE fingerprinting, offers a robust, reliable and sensitive tool for the analysis of soil fungal community structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号