首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Genetic variability within and among Bulinus truncatus of the Albertine Rift freshwater bodies were assessed to investigate the degree of inbreeding and gene flow in the snail populations. The effect of ploidy on the genetic structuring of B. truncatus is also described. We characterized the genetic structure of seven B. truncatus populations from Lake Albert, Lake Kivu, and Katosho swamp in Tanzania using five polymorphic microsatellite loci. Genetic differentiation was quantified using pairwise FST values and Nei’s standard genetic distances. Different alleles were observed across all loci and genetic diversity was low although it varied greatly across populations; observed heterozygosity was, however, higher than the expected heterozygosity in three of the populations studied. Significant heterozygote deficiencies were observed coupled with significant linkage disequilibria in five populations for all the five loci examined in this study. We found significant genetic differentiation among the seven freshwater bodies; private alleles were observed across all loci indicating restricted or absence of gene flow between populations. Limited snail dispersal and the reproductive biology of B. truncatus are the major forces shaping the genetic variation observed. Low genetic variation within B. truncatus populations exposes them to a high parasite infection risk as predicted in the Red Queen hypothesis.  相似文献   

2.
We investigated genetic variation at six microsatellite (simple sequence repeat) loci in yellow baboons (Papio hamadryas cynocephalus) at two localities: the Tana River Primate Reserve in eastern Kenya and Mikumi National Park, central Tanzania. The six loci (D1S158, D2S144, D4S243, D5S1466, D16S508, and D17S804) were all originally cloned from and characterized in the human genome. These microsatellites are polymorphic in both baboon populations, with the average heterozygosity across loci equal to 0.731 in the Tana River sample and 0.787 in the Mikumi sample. The genetic differentiation between the two populations is substantial. Kolmogornov–Smirnov tests indicate that five of the six loci are significantly different in allele frequencies in the two populations. The mean F ST across loci is 0.069, and Shriver's measure of genetic distance, which was developed for microsatellite loci (Shriver et al., 1995), is 0.255. This genetic distance is larger than corresponding distances among human populations residing in different continents. We conclude that (a) the arrays of alleles present at these six microsatellite loci in two geographically separated populations of yellow baboons are quite similar, but (b) the two populations exhibit significant differences in allele frequencies. This study illustrates the potential value of human microsatellite loci for analyses of population genetic structure in baboons and suggests that this approach will be useful in studies of other Old World monkeys.  相似文献   

3.
We describe the isolation of 11 polymorphic trinucleotide microsatellite loci from the stonefly Arcynopteryx compacta. Loci were highly variable with 3 to 14 alleles (mean = 6.45). Observed heterozygosity ranged from 0 to 0.867. Seven loci showed significant deviation from Hardy–Weinberg equilibrium across both populations. There was no evidence for null alleles, and thus, Hardy–Weinberg departures could have resulted from genetic structure between populations or subpopulations. No linkage between loci was found. The 11 loci should prove highly informative for population genetic studies.  相似文献   

4.
We isolated 15 polymorphic microsatellites from Cochlodinium polykrikoides. These loci provide a class of highly variable genetic markers, as the number of alleles ranged from two to 15, and the estimate of gene diversity was from 0.083 to 0.880 across the 15 microsatellites. We consider that these loci have a potential to reveal the genetic structure and gene flow among C. polykrikoides populations.  相似文献   

5.
Dispersal and migratory behavior are influential factors in determining how genetic diversity is distributed across the landscape. In migratory species, genetic structure can be promoted via several mechanisms including fidelity to distinct migratory routes. Particularly within North America, waterfowl management units have been delineated according to distinct longitudinal migratory flyways supported by banding data and other direct evidence. The greater white‐fronted goose (Anser albifrons) is a migratory waterfowl species with a largely circumpolar distribution consisting of up to six subspecies roughly corresponding to phenotypic variation. We examined the rangewide population genetic structure of greater white‐fronted geese using mtDNA control region sequence data and microsatellite loci from 23 locales across North America and Eurasia. We found significant differentiation in mtDNA between sampling locales with flyway delineation explaining a significant portion of the observed genetic variation (~12%). This is concordant with band recovery data which shows little interflyway or intercontinental movements. However, microsatellite loci revealed little genetic structure suggesting a panmictic population across most of the Arctic. As with many high‐latitude species, Beringia appears to have played a role in the diversification of this species. A common Beringian origin of North America and Asian populations and a recent divergence could at least partly explain the general lack of structure at nuclear markers. Further, our results do not provide strong support for the various taxonomic proposals for this species except for supporting the distinctness of two isolated breeding populations within Cook Inlet, Alaska (A. a. elgasi) and Greenland (A. a. flavirostris), consistent with their subspecies status.  相似文献   

6.
We isolated 24 polymorphic microsatellite markers from the toxic dinoflagellate A. tamiyavanichii. These loci provide a class of highly variable genetic markers, as the number of alleles ranged from 2 to 6, and the estimate of gene diversity was from 0.269 to 0.739 across the 24 microsatellites. We consider that these loci have a potentially to reveal the genetic structure and gene flow among A. tamiyavanichii populations.  相似文献   

7.
We isolated 15 polymorphic microsatellites from one of the most noxious red tide‐causing dinoflagellate species, Heterocapsa circularisquama. These loci provide one class of highly variable genetic markers, as the number of alleles ranged from two to six, and the estimate of gene diversity was from 0.205 to 0.684 across the 15 microsatellites. These loci have the potential to reveal genetic structure and gene flow among H. circularisquama populations.  相似文献   

8.
We isolated 15 polymorphic microsatellites from one of the most noxious red tide‐causing dinoflagellate species, Heterocapsa circularisquama. These loci provide one class of highly variable genetic markers, as the number of alleles ranged from two to six, and the estimate of gene diversity from 0.205 to 0.684 across the 15 microsatellites. These loci have the potential to reveal genetic structure and gene flow among H. circularisquama populations.  相似文献   

9.
Defining the scale of connectivity among marine populations and identifying the barriers to gene flow are tasks of fundamental importance for understanding the genetic structure of populations and for the design of marine reserves. Here, we investigated the population genetic structure at three spatial scales of the red gorgonian Paramuricea clavata (Cnidaria, Octocorallia), a key species dwelling in the coralligenous assemblages of the Mediterranean Sea. Colonies of P. clavata were collected from 39 locations across the Mediterranean Sea from Morocco to Turkey and analysed using microsatellite loci. Within three regions (Medes, Marseille and North Corsica), sampling was obtained from multiple locations and at different depths. Three different approaches (measures of genetic differentiation, Bayesian clustering and spatially explicit maximum‐difference algorithm) were used to determine the pattern of genetic structure. We identified genetic breaks in the spatial distribution of genetic diversity, which were concordant with oceanographic conditions in the Mediterranean Sea. We revealed a high level of genetic differentiation among populations and a pattern of isolation by distance across the studied area and within the three regions, underlining short effective larval dispersal in this species. We observed genetic differentiation among populations in the same locality dwelling at different depths, which may be explained by local oceanographic conditions and which may allow a process of local adaptation of the populations to their environment. We discuss the implications of our results for the conservation of the species, which is exposed to various threats.  相似文献   

10.
The outbreak of paralytic shellfish poisoning caused by the toxic dinoflagellate Alexandrium catenella (Dinophyceae) is a worldwide concern from the economic and food hygiene point of view. To assess the dispersal mechanism, a population genetic study using highly polymorphic genetic markers is one of the crucial approaches. We isolated 12 polymorphic microsatellites from this species. These loci provide one class of highly variable genetic marker as the number of alleles ranged from three to 12 and the estimate of gene diversity was from 0.248 to 0.897 across the 12 microsatellites; we consider that these loci have a potential to detail the genetic structure and gene flow among A. catenella populations.  相似文献   

11.
Outbreaks of paralytic shellfish poisoning caused by the toxic dinoflagellate Alexandrium minutum (Dinophyceae) are a worldwide concern from both the economic and human health points of view. For population genetic studies of A. minutum distribution and dispersal, highly polymorphic genetic markers are of great value. We isolated 12 polymorphic microsatellites from this cosmopolitan, toxic dinoflagellate species. These loci provide one class of highly variable genetic markers, as the number of alleles ranged from four to 12, and the estimate of gene diversity was from 0.560 to 0.862 across the 12 microsatellites; these loci have the potential to reveal genetic structure and gene flow among A. minutum populations.  相似文献   

12.
Quantifying population genetic structure is fundamental to testing hypotheses regarding gene flow, population divergence and dynamics across large spatial scales. In species with highly mobile life‐history stages, where it is unclear whether such movements translate into effective dispersal among discrete philopatric breeding populations, this approach can be particularly effective. We used seven nuclear microsatellite loci and mitochondrial DNA (ND2) markers to quantify population genetic structure and variation across 20 populations (447 individuals) of one such species, the European Shag, spanning a large geographical range. Despite high breeding philopatry, rare cross‐sea movements and recognized subspecies, population genetic structure was weak across both microsatellites and mitochondrial markers. Furthermore, although isolation‐by‐distance was detected, microsatellite variation provided no evidence that open sea formed a complete barrier to effective dispersal. These data suggest that occasional long‐distance, cross‐sea movements translate into gene flow across a large spatial scale. Historical factors may also have shaped contemporary genetic structure: cluster analyses of microsatellite data identified three groups, comprising colonies at southern, mid‐ and northern latitudes, and similar structure was observed at mitochondrial loci. Only one private mitochondrial haplotype was found among subspecies, suggesting that this current taxonomic subdivision may not be mirrored by genetic isolation.  相似文献   

13.
We isolated eight polymorphic microsatellites from the red-tide causing microalgae Prorocentrum micans. These loci provide a class of highly variable genetic markers, as the number of alleles ranged from two to six with an average of 3.9, and the estimate of gene diversity was from 0.15 to 0.55 with an average of 0.41 across the eight microsatellites. We consider that these loci have a potential to reveal the genetic structure and gene flow among P. micans populations.  相似文献   

14.
Pinus krempfii Lecomte is a morphologically and ecologically unique pine, endemic to Vietnam. It is regarded as vulnerable species with distribution limited to just two provinces: Khanh Hoa and Lam Dong. Although a few phylogenetic studies have included this species, almost nothing is known about its genetic features. In particular, there are no studies addressing the levels and patterns of genetic variation in natural populations of P. krempfii. In this study, we sampled 57 individuals from six natural populations of P. krempfii and analyzed their sequence variation in ten nuclear gene regions (approximately 9 kb) and 14 mitochondrial (mt) DNA regions (approximately 10 kb). We also analyzed variation at seven chloroplast (cp) microsatellite (SSR) loci. We found very low haplotype and nucleotide diversity at nuclear loci compared with other pine species. Furthermore, all investigated populations were monomorphic across all mitochondrial DNA (mtDNA) regions included in our study, which are polymorphic in other pine species. Population differentiation at nuclear loci was low (5.2%) but significant. However, structure analysis of nuclear loci did not detect genetically differentiated groups of populations. Approximate Bayesian computation (ABC) using nuclear sequence data and mismatch distribution analysis for cpSSR loci suggested recent expansion of the species. The implications of these findings for the management and conservation of P. krempfii genetic resources were discussed.  相似文献   

15.
In this work, patterns of geographical genetic diversity in Atlantic salmon Salmo salar were studied across the whole Atlantic Arc; whether these patterns (and thus genetic population structure) were affected by water temperatures was also evaluated. Salmo salar populations were characterized using microsatellite loci and then analysed with reference to ocean surface temperature data from across the region. Analysis showed the presence of a latitudinal cline of genetic variability (higher in northern areas) and water temperatures (sea surface temperatures) determining genetic population structure (the latter in combination with genetic drift in southern populations). Under the current global change scenario, northern areas of Europe would constitute refugia for diversity in the future. This is effectively the inverse of what appears to have happened in glacial refugia during the last glacial maximum. From this perspective, the still abundant and large northern populations S. salar should be considered as precious as the small almost relict southern ones and given appropriate protection. Careful management of the species, coordinated across countries and latitudes, is needed in order to avoid its extinction in Europe.  相似文献   

16.
Zanthoxylum ailanthoides Siebold & Zucc. is one of the most frequently encountered pioneer trees in Japanese warm–temperate evergreen oak forests. Our previous study in one region of Japan suggested high levels of population differentiation and putative natural selection acting on one of the nuclear loci analyzed. Here, we extend our analysis to study the genetic structure of 10 populations of Z. ailanthoides across Japan using 9 simple sequence repeat (SSR) loci for a better understanding of its genetic structure. First, the southernmost population (Kagoshima) in the samples was found to have the highest genetic diversity, suggesting there was a glacial refugium at or near the location of the population. Second, relatively strong genetic differentiation was found among populations, and there was a positive correlation between genetic distances and geographic distances (Mantel test; P < 0.001). Based on this information, we analyzed nucleotide variation at the putatively selected locus homologous to the gene encoding the ADP-glucose pyrophosphorylase large subunit (agpL). Despite the strong genetic differentiation among populations suggested by the SSR loci, the agpL locus was monomorphic in almost all populations analyzed. The results of this study strongly supported the possibility of a selective sweep at or near the agpL locus.  相似文献   

17.
The marine phytoplankton, Karenia mikimotoi, causes severe red tides which are associated with mass mortality of marine fish, and have expanded their distributions in the coastal waters of western Japan. To assess the dispersal mechanism, a population genetic study using highly polymorphic genetic markers is one of the crucial approaches. Here we developed 12 polymorphic microsatellite markers from K. mikimotoi. These loci provide a class of highly variable genetic markers, as the number of alleles ranged from 5 to 23, and the estimate of gene diversity was from 0.551 to 0.933 across the 12 microsatellites. We consider these loci potentially useful for detailing the genetic structure and gene flow among K. mikimotoi populations.  相似文献   

18.
Evolutionary transitions from outcrossing to selfing can strongly affect the genetic diversity and structure of species at multiple spatial scales. We investigated the genetic consequences of mating‐system shifts in the North American, Pacific coast dune endemic plant Camissoniopsis cheiranthifolia (Onagraceae) by assaying variation at 13 nuclear (n) and six chloroplast (cp) microsatellite (SSR) loci for 38 populations across the species range. As predicted from the expected reduction in effective population size (Ne) caused by selfing, small‐flowered, predominantly selfing (SF) populations had much lower nSSR diversity (but not cpSSR) than large‐flowered, predominantly outcrossing (LF) populations. The reduction in nSSR diversity was greater than expected from the effects of selfing on Ne alone, but could not be accounted for by indirect effects of selfing on population density. Although selfing should reduce gene flow, SF populations were not more genetically differentiated than LF populations. We detected five clusters of nSSR genotypes and three groups of cpSSR haplotypes across the species range consisting of parapatric groups of populations that usually (but not always) differed in mating system, suggesting that selfing may often initiate ecogeographic isolation. However, lineage‐wide genetic variation was not lower for selfing clusters, failing to support the hypothesis that selection for reproductive assurance spurred the evolution of selfing in this species. Within three populations where LF and SF plants coexist, we detected genetic differentiation among diverged floral phenotypes suggesting that reproductive isolation (probably postzygotic) may help maintain the striking mating‐system differentiation observed across the range of this species.  相似文献   

19.
We have isolated and characterized five microsatellite loci from Rhizopogon occidentalis and six loci from Rhizopogon vulgaris (Boletales, Basidiomycota). Microsatellite variation was assessed using 32 R. occidentalis and 48 R. vulgaris individuals from four populations in California. The number of alleles across populations ranged from two to 10 for R. occidentalis and three to eight for R. vulgaris. Expected heterozygosity values within populations ranged from 0.00 to 0.85 for R. occidentalis and 0.00 to 0.75 for R. vulgaris. These are the first microsatellite loci isolated for R. occidentalis and R. vulgaris and will be useful in the examination of their population genetic structure.  相似文献   

20.
ABSTRACT

This investigation aims at assessing patterns of spatial genetic structure of the teleost fish Sardina pilchardus across the Siculo-Tunisian Strait (a well-known discontinuous biogeographic area) and delineating putative genetic stocks within the species. For this purpose, a total of 180 specimens, collected from 11 locations stretching across the western and eastern Mediterranean coasts of Tunisia, were analysed genetically by means of 18 nuclear allozyme loci. The outcome of this study revealed strong genetic differentiation among populations, with the marked genetic distinctiveness of the central Tunisian population at Mahdia. Despite the delineation of seven well-defined genetic groups, no significant correlation was found between genetic and geographic distances. Besides, the recorded population subdivision did not align with biogeographic boundaries, suggesting the presence of chaotic genetic patchiness. Recent genetic bottlenecks were evidenced in S. pilchardus populations. Patchy migration patterns were recorded among the examined pairs of sardine populations. Among the recorded 16 polymorphic loci, GPI-2 and SOD appeared to be subject to natural selection. Patterns of population genetic differentiation and structuring were not found to be driven by outlier loci that appeared to be under selection. Furthermore, the detected neutral GPI-1 locus was found to be responsible for most of the genetic variation among identified genetic clusters. Hence, natural selection cannot cause the detected genetic heterogeneity among sardine samples. Different explanations to the origin of chaotic genetic patterns, observed within S. pilchardus, were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号