共查询到20条相似文献,搜索用时 15 毫秒
1.
We present primer sequences for eight polymorphic microsatellite loci for the formicine ant Anoplolepis gracilipes, a serious pest species in South‐East Asia and Pacific islands and still spreading on all continents. Microsatellite loci were isolated with a highly efficient method of enrichment. The number of alleles ranged from two to 19 with an observed heterozygosity ranging from 0.842 to 1.0. The markers were designed for a sociogenetic study as well as for population genetics. 相似文献
2.
Dino J. Martins 《African Journal of Ecology》2010,48(4):1115-1122
In obligate ant–plant mutualisms, the asymmetric engagement of a single plant species with multiple ant species provides the opportunity for partners to vary in their behaviour. Variation in behaviour has implications for the interactions with third‐party species such as herbivores. This study assessed the effect of obligate ant‐mutualists (Crematogaster mimosae, Crematogaster nigriceps and Tetraponera penzigi) inhabiting the African ant‐acacia (Acacia drepanolobium) on three mega‐herbivore browsers: the Maasai giraffe (Giraffa camelopardalis tippelskirchi), the reticulated giraffe (Giraffa c. reticulata) and the black rhino (Diceros bicornis). Giraffes are abundant and wide‐ranging herbivores of the acacias, whereas black rhinos are localized and perennial herbivores of the acacias. Multiyear field studies comparing the ants’ aggressive behaviour and browsing by mega‐herbivores suggested differences between the tending abilities of the primary ant species inhabiting A. drepanolobium. Trees occupied by the aggressive ant species C. mimosae had significantly less browsing by giraffes and black rhino than trees occupied by other ant species. The results of this study provide evidence that ant‐mutualists on African acacias can serve as deterrents to mega‐herbivores and that different ant species vary in their tending abilities. 相似文献
3.
In protective ant–plant mutualisms, plants offer ants food (such as extrafloral nectar and/or food bodies) and ants protect plants from herbivores. However, ants often negatively affect plant reproduction by deterring pollinators. The aggressive protection that mutualistic ants provide to some myrmecophytes may enhance this negative effect in comparison to plant species that are facultatively protected by ants. Because little is known about the processes by which myrmecophytes are pollinated in the presence of ant guards, we examined ant interactions with herbivores and pollinators on plant reproductive organs. We examined eight myrmecophytic and three nonmyrmecophytic Macaranga species in Borneo. Most of the species studied are pollinated by thrips breeding in the inflorescences. Seven of eight myrmecophytic species produced food bodies on young inflorescences and/or immature fruits. Food body production was associated with increased ant abundance on inflorescences of the three species observed. The exclusion of ants from inflorescences of one species without food rewards resulted in increased herbivory damage. In contrast, ant exclusion had no effect on the number of pollinator thrips. The absence of thrips pollinator deterrence by ants may be due to the presence of protective bracteoles that limit ants, but not pollinators, from accessing flowers. This unique mechanism may account for simultaneous thrips pollination and ant defense of inflorescences. 相似文献
4.
Ant–plant mutualisms are usually regarded as driven by ants defending plants against herbivores in return for plant‐produced food rewards and housing. However, ants may provide additional services. In a review of published studies on ant–pathogen–plant interactions, we investigated whether ants’ extensive hygiene measures, including the use of ant‐produced antibiotics, extend to their host plants and reduce plant pathogen loads. From 30 reported species combinations, we found that the presence of ants lead to reduced pathogen levels in 18 combinations and to increased levels in 6. On average, ants significantly reduced pathogen incidence with 59%. This effect size did not differ significantly from effect sizes reported from meta‐analyses on herbivore protection. Thus, pathogen and herbivore protection could be of equal importance in ant–plant mutualisms. Considering the abundance of these interactions, ecological impacts are potentially high. Furthermore, awareness of this service may stimulate the development of new measures to control plant diseases in agriculture. It should be noted, though, that studies were biased toward tropical ant–plant symbioses and that the literature in the field is limited at present. Future research on plant pathogens is needed to enhance our understanding of ant–plant mutualisms and their evolution. 相似文献
5.
Matriline and the predominant social tasks performed by workers are correlated in the functionally polygynous ponerine ant Gnamptogenys striatula. This result favors the idea that polygyny might have been secondarily selected and maintained in ants because it provided more genetic variability and, thus, more potential variation in the regulation of the division of labor within mutualistic societies. As in previous studies on ants, nepotism could not be demonstrated. Because of the relatively small number of individuals per colony, these ponerine ants constitute a valuable model for exploring how polyethism is determined in insect societies. 相似文献
6.
K. CHARLOTTE JANDÉR 《Ecological Entomology》2015,40(5):500-510
1. Mutualisms are ubiquitous and ecologically important, but may be particularly vulnerable to exploitation by species outside of the mutualism owing to a combination of an attractive reward and potentially limited defence options. For some mutualisms, ants can offer dynamic and relatively selective protection against herbivores and parasites. 2. The mutualism between fig trees and their pollinating wasps, a keystone mutualism in tropical forests, is particularly well suited for ant protection because pollinators are protected inside hollow inflorescences but parasites are exposed on the outside. 3. In the present study, it was shown that the presence of ants provides a fitness benefit for both the pollinators and the hosting fig tree. The presence of ants (i) reduced abortions of developing figs, (ii) reduced herbivory of figs, and (iii) reduced parasitic wasp loads, resulting in more pollinators and more seeds in ant‐protected figs. Even when taking costs such as ant predation on emerging pollinators into account, the total fitness increase of hosting ants was threefold for the tree and fivefold for the pollinators. 4. It was further shown that the seemingly most vulnerable parasitic wasps, of the genus Idarnes, have a specific behaviour that allows them to evade ant attack while continuing to oviposit. 5. Ants were present on 79% of surveyed Panamanian fig trees. Together with previous studies from the Old World, the results found here imply that ants are both powerful and common protectors of the fig mutualism worldwide. 相似文献
7.
Plants need to allocate some of their limited resources for defense against herbivores as well as for growth and reproduction. However, the priority of resource allocation within plants has not been investigated. We hypothesized that plants with extrafloral nectaries (EFNs) invest more chlorophyll around their EFNs—to support a high rate of carbon fixation there—than in other leaf parts of young leaves. Additionally, this chlorophyll may remain around EFNs rather than in the other leaf parts. We used Mallotus japonicus plants to investigate the chlorophyll content at leaf centers and edges and around EFNs at four stages of leaf development: middle‐expanded young leaves, fully expanded mature leaves, senior leaves, and leaves prior to abscission. These four stages of development were located at the third, fifth, eighth, and eleventh leaf positions from the apex, respectively. The results revealed that the chlorophyll content around the EFN side of the third‐position leaves was higher than that at the leaf center or edge. Although the chlorophyll content in the fifth‐position leaves did not differ between those at the leaf edge and around EFNs, the chlorophyll content around EFNs in the eighth‐position leaves was higher than that at the leaf centre and edge. The volume of EF nectar was positively correlated with the chlorophyll content around EFN during the leaf stage, but it was not correlated with the chlorophyll content in the leaf center and edge, except in fifth‐position leaves. These findings suggest that M. japonicus plants facilitate and maintain secretion of EF nectar in their young and old leaves, respectively, through the concentration and retention of chlorophyll around EFNs. 相似文献
8.
H. GIBB 《Austral ecology》2012,37(7):789-799
Ecological restoration aims to re‐establish both biodiversity and ecological function in damaged ecosystems. Ants are important drivers of ecological functions and are early colonizers of restored ecosystems. Rates at which ants perform functions are thought to be fuelled by access to plant sugars. In revegetated farmland in south‐eastern Australia, I tested if ant activity on trees, which reflects use of arboreal sugars, follows a predictable trajectory of recovery towards a remnant‐like state. Additionally, I examined whether planting method alters this trajectory by comparing tube stock (TS), which results in low Eucalyptus densities, with direct seeding (DS), which results in high Eucalyptus densities. Replicate sites (n = 5) of young (planted between 1998 and 2001) and old (planted between 1989 and 1994) TS and DS revegetation, pastures and remnants were compared. Activity on trunks was significantly positively correlated with ant tending of Hemiptera in young and old revegetation. In DS plantings, activity and estimated liquid loads on Eucalyptus trees were low and rapidly approached that in remnants, while TS sites remained similar to high values observed in pastures with trees. Patterns for Acacia were less clear, reflecting consistent densities for this species between TS and DS. At the whole‐of‐field scale, planting methods did not differ. Importantly, although trajectories differed, neither TS nor DS sites approached the low activity or estimated liquid loads observed in remnants. Rates of ant use of arboreal sugars and associated sugar‐fuelled processes may thus take considerably longer to recover than the period covered by this study. This finding suggests planting method may affect the trajectory and outcome of revegetation for plant health, as well as sugar‐fuelled ecosystem functions performed by ants. 相似文献
9.
Oliver P. Pearson 《Studies on Neotropical Fauna and Environment》2013,48(3):187-200
Early in spring, 1997, remarkably large numbers of mice appeared in the dense forests near the western end of Lago Nahuel Huapi, Argentina. Dead mice that washed up on nearby beaches at this time were fat, had full stomachs and were young or young-adults born unusually late in the preceding autumn and winter. These mice represented an aperiodic outbreak that extended over 300 km along the Andes. By analysis of trapped samples, the demographics of the two main species in this outbreak (Oligoryzomys longicaudatus and Abrothrix longipilis) were compared with demographics of the same species during the preceding 21 years. In spring of 1997, trap success for O. longicaudatus in areas of the outbreak was as high as 46%; for A. longipilis it was 22%. Neither males nor females of either species entered breeding condition in 1997 during the usual season of reproduction in spring, nor in the following summer, leading to the collapse of the populations. Numbers of Oligoryzomys decreased steadily to 15% in autumn and a normal 2% in the following spring, at which time reproduction resumed. The 1997 springtime populations in adjacent ecotone and steppe habitats to the east had not increased, contained no young individuals, and overwinter individuals reproduced normally. During the breeding season, O. longicaudatus in these populations increased more rapidly than did A. longipilis, and during the winter, they decreased faster. The unusual winter reproduction preceding the outbreak may have resulted from an increase in some deep-forest food source that in turn was responding to two successive, unusually warm winters. Predation played a negligible role in the population collapse. The mouse outbreak was not accompanied by an increase in human cases of hanta pulmonary syndrome, a disease for which O. longicaudatus is a reservoir. 相似文献
10.
Plant fitness is affected by herbivory, and in moist tropical forests, 70 percent of herbivore damage occurs on young leaves. Thus, to understand the effects of herbivory on tropical plant fitness, it is necessary to understand how tropical young leaves survive the brief, but critical, period of susceptibility. In this study, we surveyed three species of Inga during young leaf expansion. Three classes of toxic secondary metabolites (phenolics, saponins, and tyrosine), extrafloral nectar production, leaf area, and extrafloral nectary area were measured at randomly assigned young leaf sizes. In addition, all defenses were compared for potential trade‐offs during leaf expansion. No trade‐offs among defenses were found, and the concentration of all defenses, except tyrosine, decreased during leaf expansion. We suggest that plants continued to increase phenolic and saponin content, but at a rate that resulted in decreasing concentrations. In contrast, tyrosine content per leaf steadily increased such that a constant concentration was maintained regardless of young leaf size. Nectar production remained constant during leaf expansion, but, because young leaf area increased by tenfold, the investment in extrafloral nectar per leaf area significantly decreased. In addition, nectary area did not change during leaf expansion and therefore the relative size of the nectary significantly decreased during young leaf expansion. These results support the predictions of the optimal defense hypothesis and demonstrate that the youngest leaves have the highest investment in multiple defenses, most likely because they have the highest nitrogen content and are most susceptible to a diversity of herbivores. 相似文献
11.
Secondary seed dispersal by ants (myrmecochory) is an important process in semi‐arid environments where seeds are transported from the soil surface to an ant nest. Microsites from which ants often remove seeds are the small pits and depressions made by native and exotic animals that forage in the soil. Previous studies have demonstrated greater seed retention in the pits of native than exotic animals, but little is known about how biotic factors such as secondary seed dispersal by ants affect seed removal and therefore retention in these foraging pits. We used an experimental approach to examine how the morphology of burrowing bettong (Bettongia lesueur), greater bilby (Macrotis lagotis), short‐beaked echidna (Tachyglossus aculeatus) and European rabbit (Oryctolagus cuniculus) foraging pits and ant body size influenced ant locomotion and seed removal from pits along an aridity gradient. Ants took 3.7‐times longer to emerge from echidna pits (19.6 s) and six‐times longer to emerge from bettong pits (30.5 s) than from rabbit pits (5.2 s), resulting in lower seed removal from bettong pits than other pit types. Fewer seeds were removed from pits when cages were used to exclude large body‐sized (>2 mm) ants. Few seeds were removed from the pits or surface up to aridity values of 0.5 (humid and dry sub‐humid), but removal increased rapidly in semi‐arid and arid zones. Our study demonstrates that mammal foraging pit morphology significantly affects ant locomotion, the ability of ants to retrieve seeds, and therefore the likelihood that seeds will be retained within foraging pits. 相似文献
12.
WESLEY DÁTTILO VÍCTOR RICO‐GRAY DOMINGOS J. RODRIGUES THIAGO J. IZZO 《Ecological Entomology》2013,38(4):374-380
- Recently, several studies have focused on structural properties of ant–plant networks. However, little is known about the role of abiotic factors on these networks.
- As a result of different abiotic factors that can affect the patterns of ant–plant interactions, it was tested whether soil pH and canopy cover contribute to variation in the nestedness of mutualistic (plants with extrafloral nectar–EFN) and neutral (plants without EFN) ant–plant networks.
- It was shown that only mutualistic networks were affected by soil pH. It was suggested that this may occur because the variation in soil pH directly influences the secreted nectar, and as there is a preference for nectar composition by ants, this could change the patterns of interaction in mutualistic networks. As prey availability is possibly the main factor influencing ants' presence on plants without EFN, soil pH should have little or no influence on the patterns of interaction in neutral networks.
- On the other hand, nestedness was not affected by canopy cover in mutualistic and neutral networks. In spite of that canopy cover (light availability) is directly related to the amount of nectar secreted, the volume of nectar may not be important for the structure of the networks. However, canopy cover varied little in this study site. This small variation could not be enough to change the nested pattern in mutualistic and neutral networks.
- In short, the present results show that the abiotic factors that affect the availability and quality of food resources may have important effects on the structure of trophic interactions in non‐symbiotic ant–plant networks.
13.
Annika S. Nelson Riley T. Pratt Jessica D. Pratt Richard Alexander Smith Cole T. Symanski Cathrine Prenot Kailen A. Mooney 《Oikos》2019,128(4):540-550
Although species interactions are often proposed to be stronger at lower latitudes and elevations, few studies have evaluated the mechanisms driving such patterns. In this study, we assessed whether, and by which mechanisms, abiotic changes associated with elevation altered the outcome of an ant–aphid protection mutualism. To do so, we characterized the multi‐trophic interactions among the ant Formica podzolica, the aphid Aphis varians, and aphid natural enemies occurring on the plant Chamerion angustifolium within replicate high and low elevation valleys. Low (versus high) elevation sites had longer summers (snowmelt 13 days earlier) and were on average 1.1°C warmer and 41% drier throughout the year. At low elevations, individual ant colonies consumed approximately double the volume of carbohydrate baits, likely due to a higher foraging tempo, and possibly due to a greater demand for sugar‐ versus protein‐rich resources (as indicated by stable isotope analysis). Wild aphid colonies at low elevations were visited by 1.4‐fold more natural enemies (controlling for variation in aphid abundance), while experimental aphid colonies on potted plants were tended 52% more frequently by ants. As a result, ants increased aphid colony survival by 66% at low elevations but had no detectable effect at high elevations; at low (versus high) elevations aphid colonies without ants had lower survival, demonstrating stronger predator effects, while aphid colonies with ants had higher survival, demonstrating even stronger ant benefits. Analyses for the effects of mean summer temperature yielded qualitatively identical results to those based on elevation. Collectively, these findings support predictions for a greater sensitivity of higher trophic levels to warming and demonstrate how species interactions can vary across environmental gradients due to simultaneous changes in species traits and abundances across multiple trophic levels. 相似文献
14.
Patrícia Gonçalves‐Souza Eduardo Gomes Gonçalves Elder Antônio Sousa Paiva 《Botanical journal of the Linnean Society. Linnean Society of London》2016,180(2):229-240
Extrafloral nectaries (EFNs) are involved in animal–plant interactions that lead to protection against herbivory. The presence of EFNs in Araceae is rare, besides Philodendron, there is report for only two other genera. With the aim to investigate the occurrence of EFNs in Philodendron and to describe the distribution patterns and structural organization of these glands, 75 Philodendron spp. were examined, 16 of which were selected for study by light microscopy. Three Homalomena spp. were also examined for EFNs, but these were not found. Philodendron martianum was employed as a model for additional study using scanning and transmission electron microscopy. The studied EFNs showed a high degree of structural similarity. They were present in the prophyll, leaf and spathe, becoming functional in young organs. In surface view, EFNs consisted of small areas and showed one or more stomata through which secretions were released. The secretory cells formed a globular region surrounded by ground parenchyma. In P. martianum, nectariferous parenchyma cells exhibited typical features of cells with high metabolism related to nectar secretion. These results allow us to infer that EFNs have a widespread occurrence in Philodendron, and they remain an exclusive character for this group. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2016, 180 , 229–240. 相似文献
15.
Wesley Dáttilo Cecilia Díaz‐Castelazo Victor Rico‐Gray 《Biological journal of the Linnean Society. Linnean Society of London》2014,113(2):405-414
Extrafloral nectar (EFN) is a predictable and renewable resource for many ant colonies, and different ant species compete strongly to obtain and monopolize this highly nutritious food resource. Despite the importance of competition in structuring patterns of ant–plant interactions, this biological mechanism has been largely ignored in studies involving ant–plant networks. In this study we investigate the role of ant dominance hierarchy in structuring an ecological network involving ants and EFN‐bearing plants in a tropical coastal environment in Mexico. We show that within a nested ant–plant network, ant species found in the central core of highly interacting species were competitively superior, showing massive recruitment and resource domination, compared with peripheral species with fewer interactions. Moreover, we also observed that both central and peripheral ant species have the ability to quickly find the food resource. However, after 2 h of observation, central ant species are more frequently collected on the food resource when compared with peripheral species. We hypothesize that the existence of a central core of competitive ant species may indicate that most plant species found within ant–plant networks could be better protected against herbivory by these dominant ant species. In short, our results highlight the importance of competition and monopolization in the resource use by ants in the maintenance of the nested pattern in ant–plant mutualistic networks. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 405–414. 相似文献
16.
In ant–plant protection mutualisms, plants provide nesting space and nutrition to defending ants. Several plant–ants are polygynous. Possessing more than one queen per colony can reduce nestmate relatedness and consequently the inclusive fitness of workers. Here, we investigated the colony structure of the obligate acacia‐ant Pseudomyrmex peperi, which competes for nesting space with several congeneric and sympatric species. Pseudomyrmex peperi had a lower colony founding success than its congeners and thus, appears to be competitively inferior during the early stages of colony development. Aggression assays showed that P. peperi establishes distinct, but highly polygynous supercolonies, which can inhabit large clusters of host trees. Analysing queens, workers, males and virgin queens from two supercolonies with eight polymorphic microsatellite markers revealed a maximum of three alleles per locus within a colony and, thus, high relatedness among nestmates. Colonies had probably been founded by one singly mated queen and supercolonies resulted from intranidal mating among colony‐derived males and daughter queens. This strategy allows colonies to grow by budding and to occupy individual plant clusters for time spans that are longer than an individual queen’s life. Ancestral states reconstruction indicated that polygyny represents the derived state within obligate acacia‐ants. We suggest that the extreme polygyny of Pseudomyrmex peperi, which is achieved by intranidal mating and thereby maintains high nestmate relatedness, might play an important role for species coexistence in a dynamic and competitive habitat. 相似文献
17.
Kenneth D. Whitney 《Austral ecology》2002,27(6):589-595
Abstract Ant seed dispersal distances are typically small, averaging less than 1 m in published studies. Here, a new record (180 m) for ant seed dispersal distance is reported, and preliminary observations are made on the interaction between meat ants Iridomyrmex viridiaeneus Viehmeyer (Hymenoptera: Formicidae) and diaspores of the sandhill wattle, Acacia ligulata A. Cunn. ex Benth. (Fabaceae) in Kinchega National Park, New South Wales (NSW), Australia. Iridomyrmex viridiaeneus moved diaspores over distances of 7–180 m (mean 93.9 m) from the source trees to their nests, removed the arils underground and discarded the seeds over a 3000‐m2 area surrounding the nest. A germination trial determined that the viability of discarded seeds was 40%, with 80% of the viable seeds in a dormant condition. Although the cumulative effects of I. viridiaeneus on A. ligulata recruitment require further investigation, this study and others raise the possibility that myrmecochorous systems in the Australian arid zone may be characterized by longer dispersal distances than those in other parts of the world. Long‐distance seed movement by ants lends credence to the hypothesis that distance dispersal (in contrast to directed dispersal) could be of benefit to myrmecochorous plants. 相似文献
18.
Although fire‐ and ant–plant interactions influence the community structure and dynamics of Neotropical savannas, no previous studies have considered their simultaneous effects on target host plants. We monitored the effect of ant exclusion for 3 years on leaf area loss to leaf chewing insects, thrips abundance, and reproductive output of the extrafloral nectary‐bearing shrub, Peixotoa tomentosa (Malpighiaceae). We predicted that the impact of ants on herbivores and plants would depend on the ant species, and that fire would reduce the effect of ants. We deliberately chose control plants that differed in their occupant ant species. Fire occurred in the second year of the study, allowing us to determine its effect on the benefit afforded by ants. Ants reduced leaf area loss and thrips abundance, and increased fruit and seed production in all 3 years. Some ant species were more effective than others, while plants with multiple ant species suffered higher leaf area loss than plants with a single ant species. In the year following the fire, leaf damage was greater than in the other years, regardless of the ant species, and the proportional effect of ants in reducing damage was less. Interactions affecting thrips abundance did not change following fire, nor was the benefit to the plant proportionally reduced. Overall, the identity of the ant species had a greater effect than did the occurrence of fire on the ant–herbivore–plant interaction: the identity of the ant species influenced leaf area loss, thrips numbers, and bud and seed production, while fire only modified the impact of ants on the amount of leaf area consumed by insect herbivores. 相似文献
19.
Talita Câmara Walkiria R. Almeida Marcelo Tabarelli Alan N. Andersen Inara R. Leal 《Austral ecology》2017,42(1):31-39
Habitat fragmentation has a marked impact on the functional composition of tropical forest tree assemblages, and such change is likely to cascade through other trophic levels. Here, we investigate how habitat fragmentation affects extrafloral nectary (EFN)‐bearing plants and ant functional groups known to attend EFNs in a fragmented landscape of the Atlantic Forest. Extrafloral nectary‐bearing trees were identified in 50 0.1‐ha plots located in forest fragments, edge and interior patches. Ants were surveyed in 30 1‐m2 litter samples in each of 17 forest fragments and in forest interior. Extrafloral nectary‐bearing plants accounted for 19.9% of individuals and 10.5% of species and included both pioneer and shade‐tolerant species similarly rich in the three habitat types. However, shade‐tolerant individuals accounted for >80% of EFN‐bearing plants in forest interior, compared with 2% in forest edge and 29% in fragments. Forest edge and fragment plots had a third fewer EFN‐bearing individuals and species compared with forest interior. This appeared to have important implications for local ant communities as the density of EFN‐bearing trees was the most important variable explaining the species richness of arboreal dominant ants. Our results show that plant loser–winner replacements promoted by forest fragmentation can cascade through higher trophic levels, with implications for forest dynamics and biodiversity conservation. 相似文献
20.
Myrmecophytes depend on symbiotic ants (plant‐ants) to defend against herbivores. Although these defensive mechanisms are highly effective, some herbivorous insects can use myrmecophytes as their host‐plants. The feeding habits of these phytophages on myrmecophytes and the impacts of the plant‐ants on their feeding behavior have been poorly studied. We examined two phasmid species, Orthomeria alexis and O. cuprinus, which are known to feed on Macaranga (Euphorbiaceae) myrmecophytes in a Bornean primary forest. Our observations revealed that: (i) each phasmid species relied on two closely‐related myrmecophytic Macaranga species for its host‐plants in spite of their normal plant‐ant symbioses; and (ii) there was little overlap between their host‐plant preferences. More O. cuprinus adults and nymphs were found on new leaves, which were attended by more plant‐ants than mature leaves, while most adults and nymphs of O. alexis tended to avoid new leaves. In a feeding choice experiment under ant‐excluded conditions, O. alexis adults chose a non‐host Macaranga myrmecophyte that was more intensively defended by plant‐ants and was more palatable than their usual host‐plants almost as frequently as their usual host‐plant, suggesting that the host‐plant range of O. alexis was restricted by the presence of plant‐ants on non‐host‐plants. Phasmid behavior that appeared to minimize plant‐ant attacks is described. 相似文献