首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
UV‐induced melanogenesis is a well known physiological response of human skin exposed to solar radiation; however, the signaling molecules involved in the stimulation of melanogenesis in melanocytes following UV exposure remain unclear. In this study we induced melanogenesis in vitro in normal human epidermal melanocytes using a single irradiation with UVA at 1 kJ/m2 and examined the potential involvement of mitogen‐activated protein kinases (MAPK) as UVA‐responsive signaling molecules in those cells. UVA irradiation did not affect the proliferation of melanocytes, but it did increase tyrosinase mRNA expression, which reached a maximum level 4 hr after UVA irradiation. The amount of tyrosinase protein, as quantitated by immunoblotting, was also increased at 24 hr following UVA irradiation. Among the MAPK examined, extracellular signal‐related kinase (ERK) 1/2 was phosphorylated within 15 min of UVA irradiation, but no such phosphorylation was observed for c‐Jun N‐terminal kinases (JNK) or p38. Accordingly, the activity of ERK1/2 was also increased shortly after UVA irradiation. These responses of ERK1/2 to UVA irradiation were markedly inhibited when cells were pre‐treated with N‐acetyl‐l ‐cysteine, an antioxidant, or with suramin, a tyrosine kinase receptor inhibitor. The formation of (6‐4)photoproducts or cyclobutane pyrimidine dimers was not detected in cellular DNA after UVA irradiation. These findings suggest that a single UVA irradiation‐induced melanogenesis is associated with the activation of ERK1/2 by upstream signals that originate from reactive oxygen species or from activated tyrosine kinase receptors, but not from damaged DNA.  相似文献   

2.
3.
Skin cancer incidence is clearly linked to UV irradiation and increases exponentially with age. We studied the rate of removal of thymine dimers and (6-4) photoproducts in UV-irradiated human dermal fibroblasts derived from donors of different ages. There was a significant decrease with aging in the repair rates of both thymine dimers and (6-4) photoproducts (P<0.001). In addition, there was an age-associated decrease in the protein levels of ERCC3, PCNA, RPA, XPA, and p53 that participate in nucleotide excision repair. Moreover, the mRNA levels of XPA, ERCC3, and PCNA were significantly reduced with aging, suggesting that these decreases are often regulated at the mRNA level. Furthermore, with age induction of p53 after UV irradiation was significantly reduced. Taken together, our data suggest that the age-associated decrease in the repair of UV-induced DNA damage results at least in part from decreased levels of proteins that participate in the repair process.  相似文献   

4.
To investigate the potential of DNA polymerase α as a marker for DNA replication in phytoplankton, two gene fragments that showed a high degree of similarity with eukaryotic DNA polymerase α were cloned from two strains of a diatom, Skeletonema costatum (Greville) Cleve. The gene fragments amplified with the polymerase chain reaction were 397 and 396 bp in length, respectively. The deduced amino acid sequences showed 44% to 61% similarity to the corresponding regions of DNA polymerase α sequences of eukaryotic organisms ranging from yeast to humans. The similarity was especially high in three evolutionarily conserved regions within the amplified fragments. Further, hybridization patterns from Southern blotting confirmed that the amplified fragments were an integral part on the genome of S. costatum. In batch cultures abundant messenger of DNA polymerase α appeared in the late exponential phase and the early stationary phase. This pattern suggests that DNA polymerase α expression is associated with actively dividing cells. Received October 27, 1998; accepted November 13, 1998.  相似文献   

5.
Exposure to solar radiation can cause mortality in natural communities of pico‐phytoplankton, both at the surface and to a depth of at least 30 m. DNA damage is a significant cause of death, mainly due to cyclobutane pyrimidine dimer formation, which can be lethal if not repaired. While developing a UV mutagenesis protocol for the marine cyanobacterium Prochlorococcus, we isolated a UV‐hyper‐resistant variant of high light‐adapted strain MED4. The hyper‐resistant strain was constitutively upregulated for expression of the mutTphrB operon, encoding nudix hydrolase and photolyase, both of which are involved in repair of DNA damage that can be caused by UV light. Photolyase (PhrB) breaks pyrimidine dimers typically caused by UV exposure, using energy from visible light in the process known as photoreactivation. Nudix hydrolase (MutT) hydrolyses 8‐oxo‐dGTP, an aberrant form of GTP that results from oxidizing conditions, including UV radiation, thus impeding mispairing and mutagenesis by preventing incorporation of the aberrant form into DNA. These processes are error‐free, in contrast to error‐prone SOS dark repair systems that are widespread in bacteria. The UV‐hyper‐resistant strain contained only a single mutation: a 1 bp deletion in the intergenic region directly upstream of the mutTphrB operon. Two subsequent enrichments for MED4 UV‐hyper‐resistant strains from MED4 wild‐type cultures gave rise to strains containing this same 1 bp deletion, affirming its connection to the hyper‐resistant phenotype. These results have implications for Prochlorococcus DNA repair mechanisms, genome stability and possibly lysogeny.  相似文献   

6.
Calf thymus proliferating cell nuclear antigen (PCNA) promoted DNA synthesis past cis-syn and trans-syn-I cyclobutane thymine dimers by calf thymus DNA polymerase delta (Pol delta) in vitro. Templates containing site-specific cis-syn and trans-syn-I thymine dimers were prepared via a combination of solid phase synthesis with photoproduct building blocks and DNA ligation. Extension of a 15-mer primer on the UV dimer-containing templates by Pol delta produced termination and bypass products in a dNTP and PCNA dependent manner. In the absence of PCNA and at dNTP concentrations varying between 1 and 100 microM, Pol delta could not bypass the cis-syn dimer and terminated elongation one nucleotide prior to the 3'-T of the dimer. DNA synthesis past the trans-syn-I dimer was even less efficient. In the presence of PCNA, termination occurred primarily one nucleotide prior to the 3'-T of both dimers at 1 microM dNTPs but opposite the 5'-T of the dimers at 100 microM dNTPs. In addition, under the latter conditions, bypass of the dimers was observed, to the extent of about 30% of the products for the cis-syn dimer and about 15% for the trans-syn-I dimer.  相似文献   

7.
We examined how UV radiation and phosphorus (P) affect the taxonomic composition, abundance, and biomass of phytoplankton in an oligotrophic boreal lake. We exposed phytoplankton to three different solar radiation regimes (PAR + UV‐A radiation [UVAR]+ UV‐B radiation [UVBR], PAR + UVAR, and PAR only) and to five levels of P. The biomass of small chrysophytes was reduced by 350% after exposure to PAR + UVAR + UVBR compared with PAR only. No other taxa were found to be negatively affected by exposure to UVBR. Several taxa (e.g. Chry‐ sochromulina laurentiana Kling) were sensitive to UVAR, whereas others (e.g. Tabellaria flocculosa (Roth) Kutzing) were not affected by UV radiation exposure. Principal components analysis ordination separated phytoplankton that were negatively affected by UV radiation and/or positively affected by P treatments (e.g. small chrysophytes, Cryptomonas rostratiformis, T. flocculosa) from those that generally were unaffected by either treatment (e.g. desmids, some Cyanobacteria). Richness, Shannon‐Weaver diversity, and evenness were significantly higher in phytoplankton communities shielded from UVAR and UVBR. The relationship between diversity and richness was positive in all phytoplankton samples except in those exposed to UVBR. Thus, UVBR‐exposed phytoplankton communities were dominated by a few species even though the number of taxa remained relatively unchanged. Consequently, alterations in the UV environments of lakes resulting from climate warming (e.g. drought) and land‐use change (e.g. increased P export) will likely promote shifts in the community composition of lake phytoplankton.  相似文献   

8.
9.
There is growing evidence to suggest that solar radiation-induced, oxidative DNA damage may play an important role in skin carcinogenesis. Numerous methods have been developed to sensitively quantitate 8-oxo-2′deoxyguanosine (8-oxodG), a recognised biomarker of oxidative DNA damage. Immunoassays may represent a means by which the limitations of many techniques, principally derived from DNA extraction and sample workup, may be overcome. We report the evaluation of probes to thymine dimers and oxidative damage in UV-irradiated cells and the DNA derived therefrom. Thymine dimers were most readily recognised, irrespective of whether in situ in cells or in extracted DNA. However, using antibody-based detection the more subtle oxidative modifications required extraction and, in the case of 8-oxodG, denaturation of the DNA prior to successful recognition. In contrast, a recently described novel probe for 8-oxodG detection showed strong recognition in cells, although appearing unsuitable for use with extracted DNA. The probes were subsequently applied to examine the relative induction of lesions in cells following UV irradiation. Guanine-glyoxal lesions predominated over thymine dimers subsequent to UVB irradiation, whereas whilst oxidative lesions increased significantly following UVA irradiation, no induction of thymine dimers was seen. These data support the emerging importance of oxidative DNA damage in UV-induced carcinogenesis.  相似文献   

10.
Induction of DNA damage by solar UV radiation is a key event in the development of skin cancers. Bipyrimidine photoproducts, including cyclobutane pyrimidine dimers (CPDs), (6-4) photoproducts (64 PPs) and their Dewar valence isomers, have been identified as major UV-induced DNA lesions. In order to identify the predominant and most persistent lesions, we studied the repair of the three types of photolesions in primary cultures of human keratinocytes. Specific and quantitative data were obtained using HPLC associated with tandem mass spectrometry. As shown in other cell types, 64 PPs are removed from UVB-irradiated keratinocytes much more efficiently than CPDs. In contrast, CPDs are still present in high amounts when cells recover their proliferation capacities after cell cycle arrest and elimination of a part of the population by apoptosis. The predominance of CPDs is still maintained when keratinocytes are exposed to a combination of UVB and UVA. Under these conditions, 64 PPs are converted into their Dewar valence isomers that are as efficiently repaired as their (6-4) precursors. Exposure of cells to pure UVA radiation generates thymine cyclobutane dimers that are slightly less efficiently repaired than CPDs produced upon UVB irradiation. Altogether, our results show that CPDs are the most frequent and the less efficiently repaired bipyrimidine photoproducts irrespectively of the applied UV treatment.  相似文献   

11.
Matrix metalloproteinase 1 (MMP-1) is widely regarded as a biomarker of photoageing. We tested the hypothesis that MMP-1 mRNA expression and erythema share a common action spectrum by comparing the effects of erythemally equivalent doses of UVB, UVA1 and solar simulated radiation (SSR) on acute MMP-1 mRNA expression in whole human skin in vivo. Our results show comparable MMP-1 expression with all three spectra, which supports our hypothesis. The sharing of an action spectrum implies common chromophores, one of which is likely to be DNA. We have previously shown that all spectra that we used readily induce cyclobutane thymine dimers (T<>T) in human epidermis in vivo but we lack quantitative data on damage to dermal DNA. This is important because we do not know if dermal MMP-1 induction occurs via direct damage to the dermis, or indirectly via damage to the epidermis. Our results show that UVB induces about 3 times more T<>T compared with erythemally equivalent doses of UVA1, which is similar to our published epidermal data. This supports previously published work that also implicates an unknown UVA1 chromophore for erythema and MMP-1 induction. However, the distribution of the dermal DNA damage varies considerably with spectrum. In the case of UVB it is primarily in the upper dermis, but with UVA1 it is evenly distributed. Thus, irrespective of chromophores, MMP-1 induction by direct dermal damage by both spectra is possible. The practical conclusions of our data are that the small (<5%) UVB content of solar UVR is likely to be the main cause of photoageing, at least in terms of MMP-1 expression. Furthermore, prevention of erythema by sunscreen use is likely to result in reduced MMP-1 expression.  相似文献   

12.
Tardigrades inhabiting terrestrial environments exhibit extraordinary resistance to ionizing radiation and UV radiation although little is known about the mechanisms underlying the resistance. We found that the terrestrial tardigrade Ramazzottius varieornatus is able to tolerate massive doses of UVC irradiation by both being protected from forming UVC-induced thymine dimers in DNA in a desiccated, anhydrobiotic state as well as repairing the dimers that do form in the hydrated animals. In R. varieornatus accumulation of thymine dimers in DNA induced by irradiation with 2.5 kJ/m2 of UVC radiation disappeared 18 h after the exposure when the animals were exposed to fluorescent light but not in the dark. Much higher UV radiation tolerance was observed in desiccated anhydrobiotic R. varieornatus compared to hydrated specimens of this species. On the other hand, the freshwater tardigrade species Hypsibius dujardini that was used as control, showed much weaker tolerance to UVC radiation than R. varieornatus, and it did not contain a putative phrA gene sequence. The anhydrobiotes of R. varieornatus accumulated much less UVC-induced thymine dimers in DNA than hydrated one. It suggests that anhydrobiosis efficiently avoids DNA damage accumulation in R. varieornatus and confers better UV radiation tolerance on this species. Thus we propose that UV radiation tolerance in tardigrades is due to the both high capacities of DNA damage repair and DNA protection, a two-pronged survival strategy.  相似文献   

13.
Proliferating cell nuclear antigen (PCNA) is an auxiliary protein for polymerase-δ and therefore is essential for cellular DNA synthesis. The synthesis and abundance of PCNA in the cell are cell-cycle-dependent, both increasing markedly during the S phase. Such a protein could be a useful cell cycle marker, which is required for estimating algal species-specific growth rates via the cell cycle approach. By using commercially available monoclonal anti-rat-PCNA antibody and an enhanced chemiluminescence technique, PCNA-like proteins were detected in four species of marine phytoplankton. The strong single band detected on western blots of Isochrysis galbana Parke, Thalassiosira weissflogii Cleve, and Dunaliella tertiolecta Butcher had an apparent molecular weight of 33–36 kDa. This molecular weight is within the range as observed for PCNA in a wide phylogenetic array of organisms (33–36 kDa). In the diatom Skeletonema costatum (Grev.) Cleve, the PCNA antibody detected a major band of about 19 kDa as well as a minor band of 38 kDa. The detected proteins were specifically recognized by the monoclonal anti-rat-PCNA antibody. The PCNA-like proteins in I. galbana, T. weissflogii, and D. tertiolecta were more abundant in the exponential growth stage and then decreased and became undetectable in the late stationary stage. Our results show that the detected antigens appear to be algal analogs of PCNA.  相似文献   

14.
Suppression subtractive hybridization was used to identify genes regulated by ozone (100 nmol mol ? 1) in Pisum sativum. One novel gene (named PsUod1) was found. In addition, mRNA levels for four genes (encoding lipid transfer protein, pre‐hevein‐like protein, leucine‐rich repeat protein, and disease‐resistance response protein 230), which previously were shown to be regulated by biotic stress, increased. Finally, mRNA species for two genes (encoding extensin and pathogenesis‐related protein 4A), previously shown to be regulated by ozone in other species, were found to increase in abundance. The ozone‐specificity of the expression of these genes was studied by using UV‐B radiation. PsUod1 and the genes encoding extensin, leucine‐rich repeat protein, and disease‐resistance response protein 230, were differentially regulated when comparing ozone and UV‐B. Moreover, the mRNA levels for extensin, leucine‐rich repeat protein and disease‐resistance response protein 230 all increased under NaCl and aluminium stress and after wounding, whereas the message abundance for PsUod1 was unchanged under these stresses. Thus, in general, ozone caused changes similar to wounding, salt stress and aluminium stress, whereas UV‐B radiation regulated gene expression differently.  相似文献   

15.
16.
17.
18.
The sensitivity of different life stages of the eulittoral green alga Urospora penicilliformis (Roth) Aresch. to ultraviolet radiation (UVR) was examined in the laboratory. Gametophytic filaments and propagules (zoospores and gametes) released from filaments were separately exposed to different fluence of radiation treatments consisting of PAR (P = 400–700 nm), PAR + ultraviolet A (UVA) (PA, UVA = 320–400 nm), and PAR + UVA + ultraviolet B (UVB) (PAB, UVB = 280–320 nm). Photophysiological indices (ETRmax, Ek, and α) derived from rapid light curves were measured in controls, while photosynthetic efficiency and amount of DNA lesions in terms of cyclobutane pyrimidine dimers (CPDs) were measured after exposure to radiation treatments and after recovery in low PAR; pigments of propagules were quantified after exposure treatment only. The photosynthetic conversion efficiency (α) and photosynthetic capacity (rETRmax) were higher in gametophytes compared with the propagules. The propagules were slightly more sensitive to UVB‐induced DNA damage; however, both life stages of the eulittoral inhabiting turf alga were not severely affected by the negative impacts of UVR. Exposure to a maximum of 8 h UVR caused mild effects on the photochemical efficiency of PSII and induced minimal DNA lesions in both the gametophytes and propagules. Pigment concentrations were not significantly different between PAR‐exposed and PAR + UVR–exposed propagules. Our data showed that U. penicilliformis from the Antarctic is rather insensitive to the applied UVR. This amphi‐equatorial species possesses different protective mechanisms that can cope with high UVR in cold‐temperate waters of both hemispheres and in polar regions under conditions of increasing UVR as a consequence of further reduction of stratospheric ozone.  相似文献   

19.
We developed a method to investigate the effect of ultraviolet-B radiation (UVBR) on the formation of thy-mine dimers in microalgal DNA that can be used for both laboratory and in situ research. Antibody labeling of dimers was followed by a secondary antibody (fluorescein isothiocyanate) staining to allow visualization of DNA damage with flow cytometry or fluorescence microscopy. Thymine dimer-specific fluorescence in nuclear DNA of the marine diatom Cyclotella sp. was linearly related to the UVBR dose. Simultaneous measurements of cellular DNA content showed that the vulnerability of G2 cells to DNA damage did not differ significantly from the vulnerability of G1 cells. The formation and removal of thymine dimers in Cyclotella sp. cells was monitored for 3 consecutive days at two realistic UVBR irradiance levels. Thy-mine dimers were removed within 24 h when exposed to a saturating photosynthetically active radiation intensity following the UVBR treatment. This new method allows the study of UVBR-induced DNA damage on a cell-to-cell basis. It is also feasible for field studies because cells remain intact and can be recognized readily after antibody treatment.  相似文献   

20.
Gieskes  W.W.C.  Buma  A.G.J. 《Plant Ecology》1997,128(1-2):17-25
The effect of UV-B radiation on growth of marine phytoplankton was investigated in relation to DNA damage induced by a range of biologically effective doses (BEDs). Emiliania huxleyi (Prymnesiophyceae) was chosen as a model organism of the ocean's phytoplankton because of its importance in global biogeochemical cycling of carbon and sulphur, elements that influence the world's climate as components of the trace gases carbon dioxide (CO2) and dimethylsulfide (DMS). A marine diatom, Cyclotella, was studied for its capacity to repair the DNA damage, quantified as thymine dimers by the application of a monoclonal antibody against these photoproducts. DNA repair was shown to be complete after just a few hours of exposure to visible light; the repair rate increased with PAR intensity. E. huxleyi appeared to be most sensitive to UV-B radiation: growth was already affected above a dose of 100 J m-2 d-1 (biologically effective radiation, weighted with Setlow's DNA action spectrum), probably through effects on the cell cycle related to damage to nuclear DNA: mean specific growth rates were inversely correlated with thymine dimer contents in cells. Near the ocean's surface UV-B radiation conditions that induce the changes observed by us in cultures can be expected during the growing season of phytoplankton, not only in the tropics but also at higher latitudes. Nevertheles, blooms of species such as E. huxleyi are often excessive in the field. It is suggested that exposure duration of cells near the surface of the ocean can be shorter than our artificial 3 h in the laboratory due to vertical mixing, a phenomenon that is typical for the ocean's upper 50–100 m. When mixing reaches depths greater than the layer where most UV-B is attenuated, negative effects on cells through UV-A-induced inhibition of photosynthesis may prevail over DNA damage, the action spectrum of which has been shown to be limited to the UV-B part of the spectrum. Moreover, the radiation wavelengths that induce DNA damage repair (UV-A and visible) are attenuated vertically much less than UV-B. The photobiological situation in the upper ocean is much more complicated than on land, and effects of UV radiation on plankton biota can only be modelled realistically here when both the spectrally differential attenuation in the UV and visual part of the spectrum and the rate of vertical mixing are taken into account. Action spectra of both damage and repair of DNA and of photosynthesis inhibition of representative microalgal species are the second conditio sine qua non if we want to predict the effect of stratospheric ozone depletion on marine phytoplankton performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号