首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Morphometric and genetic analyses were performed to investigate the relationships between populations of the azure‐winged magpie (Cyanopica cyanus). In the morphometric analysis 193 specimens were included representing seven of the nine currently accepted subspecies. Among eight characters analysed, four showed significant differences between samples from Spain and Asia. In contrast, the Asian populations/subspecies are not differentiated morphologically except Cyanopica cyanus japonica. The genetic analysis was based on two mitochondrial sequences (control region, cytochromeb gene). The results are in accordance with the morphometric analysis, showing a clear distinction between birds from the western and eastern distribution ranges. The differentiation of C. c. japonica is not found at the sequence level. Both genetic and morphological data support species status of C. cyanus and Cyanopica cooki. The magpie (Pica pica) was included in the phylogenetic study for comparing intraspecific variation. As in C. cyanus, two clearly separated groups are found, one of them containing the far‐eastern populations (Pica pica jankowskii and Pica pica sericea) and the other the remaining subspecies studied. For both the azure‐winged magpie and the magpie the sequence data imply an east–west differentiation, probably caused by long lasting isolation that may have even started in the Pliocene or repeated expansions/restrictions of distribution ranges during the Pleistocene.  相似文献   

2.
The pinyon jay (Gymnorhinus cyanocephalus) is a primary seed disperser of pinyon pines (Pinus edulis and P. monophylla). Both the pinyon jay and the pinyon pines are experiencing significant decline. While the pinyon jay is a species of management value and conservation concern, little is known about its fecundity, among-flock dispersal, and population differentiation. We initiated genetic studies in pinyon jays using a hybridization enrichment technique to isolate seven polymorphic microsatellite repeats (AAAG and GATA) from the pinyon jay genome. A locus from the Mexican jay (Aphelocoma ultramarina) that amplifies robustly in pinyon jays is also reported. These eight loci revealed moderate to high diversity in an Arizona population of pinyon jays (4–36 alleles and H O 0.42–0.90). As in other species, tetranucleotide repeats produced easily resolved amplification products.  相似文献   

3.
Kin recognition is a critical element to kin cooperation, and in vertebrates, it is primarily based on associative learning. Recognition of socially unfamiliar kin occurs rarely, and it is reported only in vertebrate species where promiscuity prevents recognition of first‐order relatives. However, it is unknown whether the recognition of socially unfamiliar kin can evolve in monogamous species. Here, we investigate whether genetic relatedness modulates aggression among group members in Siberian jays (Perisoreus infaustus). This bird species is genetically and socially monogamous and lives in groups that are formed through the retention of offspring beyond independence, and the immigration of socially unfamiliar nonbreeders. Observations on feeders showed that genetic relatedness modulated aggression of breeders towards immigrants in a graded manner, in that they chased most intensely the immigrant group members that were genetically the least related. However, cross‐fostering experiments showed that breeders were equally tolerant towards their own and cross‐fostered young swapped as nestlings. Thus, breeders seem to use different mechanisms to recognize socially unfamiliar individuals and own offspring. As Siberian jays show a high degree of nepotism during foraging and predator encounters, inclusive fitness benefits may play a role for the evolution of fine‐scale kin recognition. More generally, our results suggest that fine‐graded kin recognition can evolve independently of social familiarity, highlighting the evolutionary importance of kin recognition for social species.  相似文献   

4.
There are many large, easy‐to‐observe anseriform birds (ducks, geese, and swans) in northern Australia and New Guinea and they often gather in large numbers. Yet, the structure of their populations and their regional movements are poorly understood. Lack of understanding of population structure limits our capacity to understand source‐sink dynamics relevant to their conservation or assess risks associated with avian‐borne pathogens, in particular, avian influenza for which waterfowl are the main reservoir species. We set out to assess present‐day genetic connectivity between populations of two widely distributed waterfowl in the Australo‐Papuan tropics, magpie goose Anseranas semipalmata (Latham, 1798) and wandering whistling‐duck Dendrocygna arcuata (Horsfield, 1824). Microsatellite data were obtained from 237 magpie geese and 64 wandering whistling‐duck. Samples were collected across northern Australia, and at one site each in New Guinea and Timor Leste. In the wandering whistling‐duck, genetic diversity was significantly apportioned by region and sampling location. For this species, the best model of population structure was New Guinea as the source population for all other populations. One remarkable result for this species was genetic separation of two flocks sampled contemporaneously on Cape York Peninsula only a few kilometers apart. In contrast, evidence for population structure was much weaker in the magpie goose, and Cape York as the source population provided the best fit to the observed structure. The fine scale genetic structure observed in wandering whistling‐duck and magpie goose is consistent with earlier suggestions that the west‐coast of Cape York Peninsula is a flyway for Australo‐Papuan anseriforms between Australia and New Guinea across Torres Strait.  相似文献   

5.
The effects of philopatry on levels of genetic differentiation were examined in the Aphelocoma jays through comparisons of gray-breasted jays (A. ultramarina; highly philopatric) and scrub jays (A. coerulescens; dispersing). Gray-breasted jays breed cooperatively in groups of up to 25 individuals, with individuals typically breeding either on the natal territory or on adjacent territories. Western North American scrub jays breed in non-cooperative pairs, with individuals typically dispersing at least 0.5 km, and often much farther. Genetic differentiation among six populations in northern Mexico and the south-western United States in each of the species was compared using starch-gel electrophoresis of protein products of 29 presumptive genetic loci. Strong differences in levels of genetic differentiation exist between the two species, both when measured using F-statistics and in terms of the slope of the isolation by distance relationship. These results suggest that social systems involving high degrees of philopatry may lead to considerably elevated rates of genetic differentiation and speciation.  相似文献   

6.
By caching acorns, jays serve as important dispersal agents for oak (Quercus) species. Yet little is known about which acorn characteristics affect selection by jays. In the traditional model of jay/oak symbiosis, large, brown, ripe acorns free of invertebrate parasites (e.g., Curculio acorn weevils) are selected by jays. Recently, it has been suggested that a tri-trophic relationship between oaks, jays, and weevils may have evolved to counter the negative dietary effects of acorn tannins. Under the tri-trophic model, jays would preferentially select acorns containing weevil larvae. We tested the assumptions that (1) acorns containing curculionid larvae exist in sufficient quantities to support jay populations and (2) jays can detect, and preferentially select, acorns containing weevil larvae, and investigated the cues by which jays select acorns. Captive Mexican jays (Aphelocomaultramarina) were presented Emory oak (Quercusemoryi) acorns in aviary feeding trials. Large, dense, viable acorns free of curculionid larvae were preferentially selected. Contrary to results of previous research, color did not affect selection. Acorn viability increased and curculionid larval occupancy decreased in adjacent savannas and isolated stands relative to existing oak woodland, perhaps favoring oak recruitment into adjacent lower-elevation grasslands. Our results compel us to reject the tri-trophic model for this system, and are consistent with the traditional jay/oak symbiosis model. Relatively long-distance dispersal of viable acorns favors Emory oak replacement, and spatial patterns of acorn viability and curculionid parasitism suggest expansion of Emory oak into adjacent low-elevation semi-arid grasslands. Received: 29 February 1996 / Accepted: 26 September 1996  相似文献   

7.
Extrinsic mortality has a strong impact on the evolution of life‐histories, prey morphology and behavioural adaptations, but for many animals the causes of mortality are poorly understood. Predation is an important driver of extrinsic mortality and mobile animals form groups in response to increased predation risk. Furthermore, in many species juveniles suffer higher mortality than older individuals, which may reflect a lower phenotypic quality, lower competitiveness, or a lack of antipredator or foraging skills. Here we assessed the causes of mortality for 371 radio tagged Siberian jays. This sedentary bird species lives in family groups that contain a breeding pair as well as related and unrelated non‐breeders. Ninety‐five percent of death were due to predation (n = 59 out of 62 individuals) and most individuals were killed by Accipiter hawks. Multivariate Cox proportional hazards models showed that non‐breeders had a lower survival than breeders, but only in territories in managed forest with little visual cover. Examining breeders, only sex influenced survival with males having a lower survival than females. For non‐breeders, juveniles had lower survival than older non‐breeders, and those on managed territories had lower survival than those on unmanaged territories. Additionally, a low feather quality reduced the survival probability of non‐breeders only. Thus, living on managed territories and having a low feature quality affected only non‐breeders, particularly juveniles. These findings add to previous research demonstrating that juvenile Siberian jays acquire critical antipredator skills from experienced group members. Thus, experience can buffer extrinsic mortality, highlighting that group living not only provides safety in numbers, but also provide social opportunities to learn critical life‐skills.  相似文献   

8.
To study the evolution of mtDNA and the intergeneric relationships of New World Jays (Aves: Corvidae), we sequenced the entire mitochondrial DNA control region (CR) from 21 species representing all genera of New World jays, an Old World jay, crows, and a magpie. Using maximum likelihood methods, we found that both the transition/transversion ratio (κ) and among site rate variation (α) were higher in flanking domains I and II than in the conserved central domain and that the frequency of indels was highest in domain II. Estimates of κ and α were much more influenced by the density of taxon sampling than by alternative optimal tree topologies. We implemented a successive approximation method incorporating these parameters into phylogenetic analysis. In addition we compared our study in detail to a previous study using cytochrome b and morphology to examine the effect of taxon sampling, evolutionary rates of genes, and combined data on tree resolution. We found that the particular weighting scheme used had no effect on tree topology and little effect on tree robustness. Taxon sampling had a significant effect on tree robustness but little effect on the topology of the best tree. The CR data set differed nonsignificantly from the tree derived from the cytochrome b/morphological data set primarily in the placement of the genus Gymnorhinus, which is near the base of the CR tree. However, contrary to conventional taxonomy, the CR data set suggested that blue and black jays (Cyanocorax sensu lato) might be paraphyletic and that the brown jay Psilorhinus (=Cyanocorax) morio is the sister group to magpie jays (Calocitta), a phylogenetic hypothesis that is likely as parsimonious with regard to nonmolecular characters as monophyly of Cyanocorax. The CR tree also suggests that the common ancestor of NWJs was likely a cooperative breeder. Consistent with recent systematic theory, our data suggest that DNA sequences with high substitution rates such as the CR may nonetheless be useful in reconstructing relatively deep phylogenetic nodes in avian groups. Received: 10 November 1999 / Accepted: 16 March 2000  相似文献   

9.
Reconstructing the Pleistocene geography of the Aphelocoma jays (Corvidae)   总被引:1,自引:0,他引:1  
Understanding historical distributions of species and evolving lineages has been a topic of considerable interest, yet methods used to date have not provided detailed, quantitative distributional hypotheses. Here, we present a technique based on models of species’ ecological niches and Pleistocene climate reconstructions that provides such hypotheses, providing the example of reconstructions for the Aphelocoma jays. We demonstrate in general a greater degree than expected of stability in jay species’ distributional areas back through at least the most recent glaciation event, and that existing patterns of genetic differentiation may date to before the Late Pleistocene glaciations. More generally, the method offers the potential for reconstructing historical distributions of species or lineages, and providing a detailed geographic framework for addressing many biogeographic and systematic questions.  相似文献   

10.
Aim The oriental magpie‐robin (Copsychus saularis) of South and Southeast Asia is a phenotypically variable species that appears to be closely related to two endemic species of the western Indian Ocean: the Madagascar magpie‐robin (Copsychus albospecularis) and the Seychelles magpie‐robin (Copsychus sechellarum). This unusual distribution led us to examine evolutionary relationships in magpie‐robins, and also the taxonomic significance of their plumage variation, via a molecular phylogenetic and population genetic analysis of C. saularis and C. albospecularis. Location Southern Asia from Nepal across Indochina to southern China, and the Indian Ocean from Madagascar to the Greater Sunda and Philippine islands. Methods We sequenced 1695 nucleotides of mitochondrial DNA comprising the complete second subunit of the nicotinamide adenine dinucleotide dehydrogenase (ND2) gene and 654 bases of the cytochrome c oxidase subunit I (COI) region in 51 individuals of eight C. saularis subspecies, 10 individuals of C. albospecularis (one subspecies) and single individuals of two other Copsychus species as outgroups. The data were analysed phylogenetically, with maximum likelihood, Bayesian, relaxed clock and parsimony methods, and geographically for patterns of genetic diversity. Results Phylogenetic analysis indicated that C. albospecularis lies within the nominal C. saularis, making C. saularis polyphyletic. Malagasy and non‐Philippine Asian populations form a monophyletic group that is sister to a clade of Philippine populations. Within non‐Philippine Asian populations, two groups are evident: black‐bellied birds in the eastern Greater Sunda islands and white‐bellied birds in the western Sundas and on mainland Asia. Main conclusions The phylogeny of magpie‐robins suggests a novel pattern of dispersal and differentiation in the Old World. Ancestral magpie‐robins appear to have spread widely among islands of the Indian Ocean in the Pliocene, probably aided by their affinity for coastal habitats. Populations subsequently became isolated in island groups, notably the Philippines, Madagascar and the Greater Sundas, leading to speciation in all three areas. Isolation in the Philippines may have been aided by competitive exclusion of C. saularis from Palawan by a congener, the white‐vented shama (Copsychus niger). In the Greater Sundas, white‐bellied populations appear to have invaded Borneo and Java recently, where they hybridize with resident black‐bellied birds.  相似文献   

11.
Condition, defined as the amount of ‘internal resources’ an individual can freely allocate, is often assumed to be environmentally determined and to reflect an individual’s health and nutritional status. However, an additive genetic component of condition is possible if it ‘captures’ the genetic variance of many underlying traits as many fitness‐related traits appear to do. Yet, the heritability of condition can be low if selection has eroded much of its additive genetic variance, or if the environmental influences are strong. Here, we tested whether feather growth rate – presumably a condition‐dependent trait – has a heritable component, and whether variation in feather growth rate is related to variation in fitness. To this end, we utilized data from a long‐term population study of Siberian jays (Perisoreus infaustus), and found that feather growth rate, measured as the width of feather growth bars (GB), differed between age‐classes and sexes, but was only weakly related to variation in fitness as measured by annual and life‐time reproductive success. As revealed by animal model analyses, GB width was significantly heritable (h2 = 0.10 ± 0.05), showing that this measure of condition is not solely environmentally determined, but reflects at least partly inherited genetic differences among individuals. Consequently, variation in feather growth rates as assessed with ptilochronological methods can provide information about heritable genetic differences in condition.  相似文献   

12.
Timing of reproduction can influence individual fitness whereby early breeders tend to have higher reproductive success than late breeders. However, the fitness consequences of timing of breeding may also be influenced by environmental conditions after the commencement of breeding. We tested whether ambient temperatures during the incubation and early nestling periods modulated the effect of laying date on brood size and dominant juvenile survival in gray jays (Perisoreus canadensis), a sedentary boreal species whose late winter nesting depends, in part, on caches of perishable food. Previous evidence has suggested that warmer temperatures degrade the quality of these food hoards, and we asked whether warmer ambient temperatures during the incubation and early nestling periods would be associated with smaller brood sizes and lower summer survival of dominant juveniles. We used 38 years of data from a range‐edge population of gray jays in Algonquin Provincial Park, Ontario, where the population has declined over 50% since the study began. Consistent with the “hoard‐rot” hypothesis, we found that cold temperatures during incubation were associated with larger brood sizes in later breeding attempts, but temperatures had little effect on brood size for females breeding early in the season. This is the first evidence that laying date and temperature during incubation interactively influence brood size in any bird species. We did not find evidence that ambient temperatures during the incubation period or early part of the nestling period influenced summer survival of dominant juveniles. Our findings provide evidence that warming temperatures are associated with some aspects of reduced reproductive performance in a species that is reliant on cold temperatures to store perishable food caches, some of which are later consumed during the reproductive period.  相似文献   

13.
14.
Aim Magpie‐robins and shamas are forest and woodland birds of south Asia. There are two genera: Trichixos for the monotypic T. pyrrhopygus, and Copsychus for other species. Two species are widespread, whereas the others are restricted to specific islands. Endemicity is highest in the Philippines. Using phylogenetic methods, we examined how this group came to its unusual distribution. Location Mainland Asia from India to southern China, and islands from Madagascar to the Philippines. Particular emphasis is placed on the Greater Sundas and Philippines. Methods The phylogeny was estimated from DNA sequences of 14 ingroup taxa representing all nine currently recognized Copsychus and Trichixos species. The entire mitochondrial ND2 gene and portions of nuclear myoglobin intron 2 (Myo2) and transforming growth factor beta 2 intron 5 (TGFβ2‐5) were sequenced for all but two species. The phylogeny was reconstructed using maximum likelihood and Bayesian methods. The timing of divergence events was estimated using a relaxed molecular clock approach, and ancestral areas were examined using stochastic modelling. Results The group comprises three main clades corresponding to ecological types: Trichixos, a primary‐forest specialist; Copsychus magpie‐robins, open‐woodland and coastal species; and Copsychus shamas, thick‐forest species. Trichixos appears to be sister to the magpie‐robins, rendering Copsychus polyphyletic. The dating of phylogenetic nodes was too ambiguous to provide substantial insight into specific geographical events responsible for divergence within the group. Some patterns are nevertheless clear. Copsychus shamas reached the Philippines, probably in two separate invasions, and split into endemic species. Copsychus malabaricus and C. saularis expanded widely in the Greater Sundas and mainland Southeast Asia without species‐level diversification. Main conclusions Magpie‐robins are excellent dispersers and have diversified into distinct species only on isolated oceanic islands. Trichixos, a poor disperser, is restricted to mature forests of the Malay Peninsula, Sumatra and Borneo. Copsychus shamas are intermediate in habitat preference and dispersal capabilities. Their endemism in the Philippines may be attributed to early colonization and specialization to interior forests. In the Greater Sundas, C. malabaricus and C. saularis populations split and came together on Borneo to form two separate subspecies (of each species), which now hybridize.  相似文献   

15.
Previous studies have suggested that bird populations in east Asia were less affected by Pleistocene climatic fluctuations than those in Europe and North America. However, this is mainly based on comparisons among species. It would be more relevant to analyse geographical populations of widespread species or species complexes. We analyzed two mitochondrial genes and two nuclear introns for all taxa of Pica to investigate 1) which Earth history factors have shaped the lineage divergence, and 2) whether different geographical populations were differently affected by the Pleistocene climatic changes. Our mitochondrial tree recovered three widespread lineages, 1) in east Asia, 2) across north Eurasia, and 3) in North America, respectively, with three isolated lineages in northwest Africa, Arabia and the Qinghai‐Tibet Plateau, respectively. Divergences among lineages took place 1.4–3.1 million yr ago. The northwest African population was sister to the others, which formed two main clades. In one of these, Arabia was sister to Qinghai‐Tibet, and these formed the sister clade to the east Asia clade. The other main clade comprised the North American and north Eurasian clades. There was no or very slight structure within these six geographical clades, including a lack of differentiation between the two North American species black‐billed magpie P. hudsonia and yellow‐billed magpie P. nutalli. Demographic expansion was recorded in the three most widespread lineages after 0.06 Ma. Asymmetric gene flow was recorded in the north Eurasian clade from southwestern Europe eastward, whereas the east Asian clade was rooted in south central China. Our results indicate that the fragmentation of the six clades of Pica was related to climatic cooling and aridification during periods of the Pliocene–Pleistocene. Populations on both sides of the Eurasian continent were similarly influenced by the Pleistocene climate changes and expanded concomitantly with the expansion of steppes. Based on results we also propose a revised taxonomy recognising seven species of Pica.  相似文献   

16.
The grey‐crowned babbler (Pomatostomus temporalis) is a cooperative breeding bird species in which nonbreeding helpers of both sexes care for the young of breeding individuals. To measure the genetic relatedness between breeders and their offspring and helpers, we developed nine microsatellite markers. Most of the loci were highly polymorphic. These loci will be useful in understanding the evolution and maintenance of cooperative breeding and helping behaviour in this species.  相似文献   

17.
Nestlings of non‐evicting avian brood‐parasites have to compete for food with foster parents' own nestlings. The outcome of these competitive contests is determined mainly by body size differences between parasitic and host nestlings. As part of the coevolutionary arms race between brood parasites and their hosts at the nestling stage, it has been reported that some host foster parents discriminate against parasitic chicks and are reluctant to feed them. Here, by experimentally creating size‐matched broods of different composition (only magpie Pica pica chicks, only great spotted cuckoo Clamator glandarius chicks or mixed broods), we show that great spotted cuckoo chicks starved in 20.2 per cent (17 of 84) of the parasitized magpie nests even in absence of size asymmetries, while in none (0 of 72) of the nests a magpie chick starved. As far as we know, this is the first record of non‐evictor brood parasitic nestlings starving without being smaller than their host nestmates in a frequently used host species. Nest composition had no effect on chick starvation. The cuckoo nestling starved even in two of the nests occupied by only one cuckoo chick. Our results could be explained by (1) magpies being reluctant to feed cuckoo chicks; (2) parasitic chicks receiving lower‐quality food items or cuckoo nestlings being sensitive to some particular component of the diet (e.g. cereal grains); and (3) the existence of cuckoo chick discrimination ability by magpie foster parents.  相似文献   

18.
There is often a sex bias in helping effort in cooperatively breeding species with both male and female helpers, and yet this phenomenon is still poorly understood. Although sex‐biased helping is often assumed to be correlated with sex‐specific benefits, sex‐specific costs could also be responsible for sex‐biased helping. Cooperatively breeding brown jays (Cyanocorax morio) in Monteverde, Costa Rica have helpers of both sexes and dispersal is male‐biased, a rare reversal of the female‐biased dispersal pattern often seen in birds. We quantified helper contributions to nestling care and analyzed whether there was sex‐biased helping and if so, whether it was correlated with known benefits derived via helping. Brown jay helpers provided over 70% of all nestling feedings, but they did not appear to decrease the workload of breeders across the range of observed group sizes. Female helpers fed nestlings and engaged in vigilance at significantly higher levels than male helpers. Nonetheless, female helpers did not appear to gain direct benefits, either through current reproduction or group augmentation, or indirect fitness benefits from helping during the nestling stage. While it is possible that females could be accruing subtle future direct benefits such as breeding experience or alliance formation from helping, future studies should focus on whether the observed sex bias in helping is because males decrease their care relative to females in order to pursue extra‐territorial forays. Explanations for sex‐biased helping in cooperative breeders are proving to be as varied as those proposed for helping behavior in general, suggesting that it will often be necessary to quantify a wide range of benefits and costs when seeking explanations for sex‐biased helping.  相似文献   

19.
Mirror self-recognition, as an index of self-awareness, has been proposed as a precursor for more complex social cognitive abilities, such as prosocial reasoning and cooperative decision-making. Indeed, evidence for mirror self-recognition has been shown for animals possessing complex social cognitive abilities such as great apes, dolphins, elephants and corvids. California scrub jays (Aphelocoma californica) have provided strong evidence that non-human animals are capable of mental state attribution. For instance, scrub jays are reported to use their experience stealing the food of others to infer that other birds may similarly intend to steal from them. If a concept of “self” is required for such complex social cognitive abilities, then scrub jays might be expected to show mirror self-recognition. Thus, we examined whether California scrub jays are capable of mirror self-recognition using two experimental contexts: a caching task and the mark test. During the caching task, we compared the extent to which scrub jays protected their food after caching alone, in the presence of a conspecific and in the presence of a mirror. The birds did not engage in more cache protection behaviours with a mirror present than when caching alone, suggesting scrub jays may have recognized their reflection and so did not expect cache theft. Alternative explanations for this behaviour are also discussed. During the mark test, the scrub jays were surreptitiously marked with a red or plumage-coloured control sticker. The scrub jays showed no evidence of mirror self-recognition during the mark test, as the birds did not preferentially attempt to remove the red mark in the presence of a mirror. Together, the results provide mixed evidence of the mirror self-recognition abilities of California scrub jays. We highlight the need to develop alternative approaches for evaluating mirror self-recognition in non-human animals to better understand its relationship with complex social cognition.  相似文献   

20.
Blue jays (Cyanocitta cristata) were trained to hunt for non-cryptic moths, presented in projected images. On each trial, the jays chose one of two patches to hunt in: (1) a uniform, ‘non-depleting’ patch with constant prey density of 0·25; or (2) a ‘depleting’ patch in which prey density changed during the foraging bout. In the depleting patch, the initial prey density was 0·50, declining to zero in a single step part-way through each foraging bout (session). The patch choices of the jays were greatly affected by these conditions. The jays chose the depleting patch early in the session, and then switched to the uniform patch. They obtained nearly all of the prey available. Analysis of the events preceding switches between patches suggested that the jays used different rules to switch out of each of the two patches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号