首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Current study was designed multiple occlusions and reperfusion of bilateral carotid arteries induced cerebral injury model and evaluated the protective effect of gallic acid on it. In silico study was involved to study gallic acid binding affinity on cerebrotonic proteins compared with standard drugs using Autodoc vina tool. Cerebral ischemia was induced by occlusion of bilateral common carotid arteries for 10 mins followed by 10 reperfusions (1 cycle), cycle was continued to 3 cycles (MO/RCA), then pathological changes were observed by estimation of brain antioxidants as superoxide dismutase, glutathione, catalase, oxidants like malonaldehyde, cerebral infarction area, histopathology, and study gallic acid treatment against cerebral injury. Gallic acid exhibited a strong binding affinity on targeted cerebrotoxic proteins. MO/RCA rat brain antioxidant levels were significantly decreased and increased MDA levels (p < 0.0001), Infarction size compared to sham rats. Gallic acid treatment rat brain MDA levels significantly decreased (p < 0.4476) and increased SOD (p < 0.0001), CAT (p < 0.0001), GSH (p < 0.0001), cerebral infarction area when compared to MO/RCA group. Developed model showed significant cerebral ischemic injury in rats, injury was ameliorated by Gallic acid treatment and in silico approaches also inhibit the cerebrotoxic protein function by targeting on active sites.  相似文献   

2.
Association studies suggest beta(1)-adrenergic receptor (beta(1)-AR) polymorphisms are disease modifiers in heart failure. The Arg389 variant has increased coupling to G(s) in transfected cells and evokes enhanced ventricular function in transgenic mice. Here, we assessed the differential effects of the human Gly389 and Arg389 beta(1)-AR polymorphisms on myocardial recovery after ischemic injury. Function was studied in transgenic mice with cardiac-specific expression of either human Gly389 or Arg389 beta(1)-AR at baseline and after 20 min of ex vivo ischemia and reperfusion (I/R). In 3-mo-old mice of either genotype, there was poor recovery after I/R (approximately 38% vs. approximately 68% for nontransgenic). Paradoxically, at 6 mo of age, functional recovery remained severely depressed in Gly389 hearts (approximately 32%) but was similar to nontransgenic for Arg389 hearts (approximately 60%). In Arg389 hearts, agonist-promoted adenylyl cyclase activities were depressed by approximately 35% at 6 mo of age, and G protein-coupled receptor kinase (GRK) activity was increased by approximately twofold compared with Gly389. Furthermore, I/R evoked an approximately threefold increase in ERK2 phosphorylation in Arg389 but an approximately twofold decrease in Gly389 hearts. Individually, these changes have been shown to mitigate I/R injury; thus the Arg389-beta(1)-AR uniquely evokes specialized pathways that act to protect against I/R injury. The improved recovery of function after I/R in Arg389 hearts relative to Gly389 appears to be due to an adaptive multimechanism program with allele-specific alterations in receptor signaling, GRK activity, and ERK2. Thus genetic variation of the human beta(1)-AR may play a role in cardiac functional recovery after ischemic injury.  相似文献   

3.
The ATP and creatine phosphate (PCr) contents in isolated guinea-pig hearts were determined by 31P-MRS measurement at 80.75 MHz using the Langendorff technique. Reperfusion of post-ischemic hearts with adenosine for 180 minutes increased ATP to 117.4% and decreased PCr to 59.8% of the preischemic value. Reperfusion without adenosine did not increase ATP and did not decrease PCr. The depressed cardiac function due to ischemia was remarkably improved in post-ischemic hearts by the increase in ATP due to adenosine. We found that the loss of ATP due to ischemia is not necessarily proportional to the extent of myocardial ischemic injury.  相似文献   

4.
A brief, transient period of coronary artery occlusion (less than 20 minutes in duration) followed by reperfusion does not result in irreversible myocyte injury or death, yet the regional contractile function and high energy phosphate content of the previously ischemic tissue remains depressed or 'stunned' for hours to days following reperfusion. It has been suggested that this prolonged postischemic dysfunction of viable, previously ischemic myocardium may be a consequence of oxygen-derived free radicals generated during occlusion or at the time of reperfusion. Recent evidence demonstrates that free radical scavenging agents such as superoxide dismutase (SOD) + catalase, N-2-mercaptopropionylglycine, and allopurinol, administered prior to coronary artery occlusion, significantly enhance recovery of regional contractile function of the stunned, previously ischemic tissue. This improved contractile function was not, however, accompanied by improvements in high energy phosphate metabolism: infusion of SOD + catalase did not preserve ATP stores in the previously ischemic tissue. These data support the hypothesis that oxygen-derived free radicals contribute, at least in part, to the phenomenon of the stunned myocardium. The source or mechanisms of free radical production in the setting of brief, transient ischemia, however, remains to be elucidated.  相似文献   

5.
The sea lamprey has been used as a model for the study of axonal regeneration after spinal cord injury. Previous studies have suggested that, unlike developing axons in mammal, the tips of regenerating axons in lamprey spinal cord are simple in shape, packed with neurofilaments (NFs), and contain very little F-actin. Thus it has been proposed that regeneration of axons in the central nervous system of mature vertebrates is not based on the canonical actin-dependent pulling mechanism of growth cones, but involves an internal protrusive force, perhaps generated by the transport or assembly of NFs in the distal axon. In order to assess this hypothesis, expression of NFs was manipulated by antisense morpholino oligonucleotides (MO). A standard, company-supplied MO was used as control. Axon retraction and regeneration were assessed at 2, 4 and 9 weeks after MOs were applied to a spinal cord transection (TX) site. Antisense MO inhibited NF180 expression compared to control MO. The effect of inhibiting NF expression on axon retraction and regeneration was studied by measuring the distance of axon tips from the TX site at 2 and 4 weeks post-TX, and counting the number of reticulospinal neurons (RNs) retrogradely labeled by fluorescently-tagged dextran injected caudal to the injury at 9 weeks post-TX. There was no statistically significant effect of MO on axon retraction at 2 weeks post-TX. However, at both 4 and 9 weeks post-TX, inhibition of NF expression inhibited axon regeneration.  相似文献   

6.
To study the mechanisms of mitochondrial dysfunction due to ischemia-reperfusion (I/R) injury, rat hearts were subjected to 20 or 30 min of global ischemia followed by 30 min of reperfusion. After recording both left ventricular developed pressure (LVDP) and end-diastolic pressure (LVEDP) to monitor the status of cardiac performance, mitochondria from these hearts were isolated to determine respiratory and oxidative phosphorylation activities. Although hearts subjected to 20 min of ischemia failed to generate LVDP and showed a marked increase in LVEDP, no changes in mitochondrial respiration and phosphorylation were observed. Reperfusion of 20-min ischemic hearts depressed mitochondrial function significantly but recovered LVDP completely and lowered the elevated LVEDP. On the other hand, depressed LVDP and elevated LVEDP in 30-min ischemic hearts were associated with depressions in both mitochondrial respiration and oxidative phosphorylation. Reperfusion of 30-min ischemic hearts elevated LVEDP, attenuated LVDP, and decreased mitochondrial state 3 and uncoupled respiration, respiratory control index, ADP-to-O ratio, as well as oxidative phosphorylation rate. Alterations of cardiac performance and mitochondrial function in I/R hearts were attenuated or prevented by pretreatment with oxyradical scavenging mixture (superoxide dismutase and catalase) or antioxidants [N-acetyl-L-cysteine or N-(2-mercaptopropionyl)-glycine]. Furthermore, alterations in cardiac performance and mitochondrial function due to I/R were simulated by an oxyradical-generating system (xanthine plus xanthine oxidase) and an oxidant (H(2)O(2)) either upon perfusing the heart or upon incubation with mitochondria. These results support the view that oxidative stress plays an important role in inducing changes in cardiac performance and mitochondrial function due to I/R.  相似文献   

7.
The aim of this study was to determine whether the transition from insulin resistance to hyperglycemia in a model of type 2 diabetes leads to intrinsic changes in the myocardium that increase the sensitivity to ischemic injury. Hearts from 6-, 12-, and 24-wk-old lean (Control) and obese Zucker diabetic fatty (ZDF) rats were isolated, perfused, and subjected to 30 min of low-flow ischemia (LFI) and 60 min of reperfusion. At 6 wk, ZDF animals were insulin resistant but not hyperglycemic. By 12 wk, the ZDF group was hyperglycemic and became progressively worse by 24 wk. In spontaneously beating hearts rate-pressure product (RPP) was depressed in the ZDF groups compared with age-matched Controls, primarily due to lower heart rate. Pacing significantly increased RPP in all ZDF groups; however, this was accompanied by a significant decrease in left ventricular developed pressure. There was also greater contracture during LFI in the ZDF groups compared with the Control group; surprisingly, however, functional recovery upon reperfusion was significantly higher in the diabetic 12- and 24-wk ZDF groups compared with age-matched Control groups and the 6-wk ZDF group. This improvement in recovery in the ZDF diabetic groups was independent of substrate availability, severity of ischemia, and duration of diabetes. These data demonstrate that, although the development of type 2 diabetes leads to progressive contractile and metabolic abnormalities during normoxia and LFI, it was not associated with increased susceptibility to ischemic injury.  相似文献   

8.
This study involved cerebroprotective potential of aloe emodin (AE) by in silico molecular docking analysis against various cerebrotoxic proteins followed by in vivo activity on multiple occlusions and reperfusion of bilateral carotid arteries (MO/RCA) induced cerebral injury in experimental rats. Molecular docking studies were carried out to evaluate the binding affinity (or binding interaction) between AE and various proteins involved in apoptosis such as caspase-3 (CASP3) and Bcl-2-associated X protein (BAX), and proteins involved in inflammation such as interleukin-6 (IL-6), tumor necrosis factor α (TNF α), nitric oxide synthase (NOS), acid-sensing ion channel (ASIC) and glutamate receptor (GR) involved in cerebral stroke, and results were compared with that of standard drugs, minocycline, quercetin, and memantine. Cerebral ischemic reperfusion induced by MO/RCA was assessed for 10 mins reperfusion period as one cycle, and the experiment was conducted for up to 3 cycles in rats. After completion of 3 cycles, the rats were subjected to ethically acceptable animal euthanasia followed by isolation of the brains which were studied for the size of cerebral infarction, and biochemical parameters such as glutathione (GSH), malondialdehyde (MDA), catalase (CAT) were estimated from the brain homogenate. Further, histological studies were done to study neuronal contact. Results of molecular docking indicated that the AE exhibited interaction with active sites of cerebrotoxic proteins usually involved in protein functions or cerebrotoxicity. Biochemical results showed that in the untreated brain, MDA levels increased significantly, and decreased GSH and CAT levels were observed when compared to MO/RCA group, while treated rats showed a decrease in the levels of MDA and an increase in GSH and CAT levels as compared to MO/RCA rats. In comparison with sham rats and normal rats, histopathological analysis revealed neuronal damage in MO/RCA surgery rats which manifested as decreased intact neurons. However, treatment with AE 50 mg/kg b.wt. restored contact between neuronal cells. It can be concluded that AE showed cerebroprotective effect on RO/RCA with promising inhibition of cerebrotoxic proteins (apoptotic and neuroinflammatory) as evident from molecular docking studies. The cerebroprotective potential of AE could be due to its anti-inflammatory, antioxidant, and antiapoptotic principles.  相似文献   

9.
The neutrophil has been implicated as a source of oxygen free radicals provoking the reperfusion injury in various ischemic organs. This provided the motivation to explore the pathophysiologic role of the neutrophil in a swine model of postischemic latissimus dorsi myocutaneous flaps. Neutrophil function, neutrophil sequestration, and the anatomic distribution of muscle injury were estimated following a 6- to 8-hour global ischemic insult. Neutrophil function as measured by phorbol myristate acetate-stimulated superoxide production was found to be enhanced on reperfusion of ischemic flaps (n = 17). Neutrophil sequestration estimated from the arterial-venous difference of flap blood (n = 12) demonstrated that postischemic flaps more avidly sequester neutrophils than nonischemic flaps. The anatomic distribution of muscle injury (n = 7) was predominantly localized to the proximal portion of the ischemic flap. The enhanced functional response exhibited by neutrophils reperfusing an ischemic myocutaneous flap supports an active neutrophil role in the mediation of reperfusion injury.  相似文献   

10.
Summary. The microdialysis (MD) technique allows for continuous in vivo monitoring of dynamic changes in the interstitial levels of energy-related metabolites. The release of taurine from the myocyte has been suggested as a marker of ischemic injury. The relationship between (interstitial) taurine release and the degree of myocardial ischemic injury was evaluated following a 40min long ischemia in a porcine heart-infarct-model. Different protocols of ischemia and reperfusion were used in order to achieve a graded level of myocardial injury. Both interstitial peak levels and the area under curve of taurine obtained during ischemia and reperfusion correlated with the degree of ischemic injury (assessed by developed infarct size estimation). The release of taurine in the myocardium measured by the MD-technique correlated with the degree of ischemic injury during ongoing ischemic insult. Hence, taurine determination in the MD-setting represents a powerful tool to follow the development of myocardial ischemic injury over time.  相似文献   

11.
Renal ischemic/reperfusion injury in vivo results in a significant increase of acute renal failure (ARF) and death. Nevertheless, there are many limitations in using in vivo models of renal ischemic injury to elucidate the detailed mechanisms of renal injury. Adenosine triphosphate (ATP), an extracellular signal, has been shown to be an important factor in regulation of epithelial cell function. Thus, the present study was performed to establish in vitro ischemic model using primary cultured rabbit renal proximal tubule cells (PTCs) and to examine the effect of ATP in this model. We established an in vitro model of ischemic injury, causing severe depletion of intracellular ATP by using the combination of a mitochondrial respiration inhibitor (antimycin A), non-metabolizable glucose analog (2-deoxyglucose), and calcium ionophore (A23187) in PTCs. Indeed, this ischemic injury significantly increased LDH release, a marker of structural damage, and ATP blocked ischemic injury-induced LDH release. 2-Methylthio-ATP and ATP-gamma-S (P2Y purinoceptor agonists) also blocked ischemic injury-induced LDH release, whereas AMP-CPP (P2X purinoceptor agonist) did not block it. In experiments to examine the relationship between ischemic injury and NF-kappaB activation, ischemic injury increased NF-kappaB translocation, DNA binding activity, and CAT activity. On the other hand, ATP, ATP-gamma-S, or 2-methylthio-ATP protected ischemic injury-induced NF-kappaB activation. These results suggest that the protective effect of ATP on ischemic injury is, in part, related to inhibition of NF-kappaB activation via P2Y receptor in PTCs.  相似文献   

12.
Stroke potently stimulates cell proliferation in the subventricular zone of the lateral ventricles with subsequent neuroblast migration to the injured striatum and cortex. However, most of the cells do not survive and mature. Extracellular Wnt proteins promote adult neurogenesis in the neurogenic niches. The aim of the study was to examine the efficacy of Wnt signaling on neurogenesis and functional outcome after focal ischemic injury. Lentivirus expressing Wnt3a-HA (LV-Wnt3a-HA) or GFP (LV-GFP) was injected into the striatum or subventricular zone of mice. Five days later, focal ischemic injury was induced by injection of the vasoconstrictor endothelin-1 into the striatum of the same hemisphere. Treatment with LV-Wnt3a-HA into the striatum significantly enhanced functional recovery after ischemic injury and increased the number of BrdU-positive cells that differentiated into mature neurons in the ischemic striatum by day 28. Treatment with LV-Wnt3a-HA into the subventricular zone significantly enhanced functional recovery from the second day after injury and increased the number of immature neurons in the striatum and subventricular zone. This was accompanied by reduced dissemination of the neuronal injury. Our data indicate that Wnt signaling appears to contribute to functional recovery after ischemic injury by increasing neurogenesis or neuronal survival in the striatum.  相似文献   

13.
Mitogen-activated protein (MAP) kinase-activated protein kinase 2 (MK2) is one of several kinases directly regulated by p38 MAP kinase. A role of p38 MAP kinase in ischemic brain injury has been previously suggested by pharmacological means. In the present study, we provide evidence for a role of MK2 in cerebral ischemic injury using MK2-deficient (MK2(-/-)) mice. MK2(-/-) mice subjected to focal ischemia markedly reduced infarct size by 64 and 76% after transient and permanent ischemia, respectively, compared with wild-type mice. Furthermore, MK2(-/-) mice had significant reduction in neurological deficits. Real-time PCR analysis identified a significantly lower expression in interleukin-1beta mRNA (53% reduction) but not in tumor necrosis factor-alpha mRNA in MK2(-/-) mice over wild-type animals after ischemic injury. The significant reduction in interleukin-1beta was also confirmed in MK2(-/-) mice by enzyme-linked immunosorbent assay. The marked neuroprotection from ischemic brain injury in MK2(-/-) mice was not associated with the alteration of hemodynamic or systemic variables, activation of caspase-3, or apoptosis. Our data provide new evidence for the involvement of MAP kinase pathway in focal ischemic brain injury and suggest that this effect might be associated with the expression of interleukin-1beta in the ischemic brain tissue.  相似文献   

14.
This study was carried out to determine whether Kupffer cell Fc receptor function is depressed after injury. Three approaches to the determination of Fc receptor function were evaluated: IgG-coated erythrocytes (EIgG) were used as the receptor probe with a perfused liver system, EIgG were used as the receptor probe in vivo, and small aggregates of IgG (AIgG) were used as the receptor probe in vivo. Nearly half of the injected dose of EIgG was taken up by the perfused liver (nonrecirculating, serum-free system). In contrast, only 2.6% of erythrocytes not coated with IgG were taken up, and only 5.6% of erythrocytes coated with IgM were taken up by the perfused liver. Thus, there was little nonspecific or complement-dependent uptake of EIgG by the liver. The uptake of EIgG by the perfused liver was depressed following thermal injury, endotoxemia, and the phagocytosis of EIgG. These results were interpreted as indicating that Kupffer cell Fc receptor function was depressed under these conditions. The results obtained with the hepatic uptake of EIgG in vivo were very similar to those with EIgG in the perfused liver. However, since it was found that complement receptors as well as Fc receptors were probably involved in the in vivo clearance of EIgG, these results could be due to a depression of one or both of these receptors. The hepatic uptake of AIgG was not depressed by complement depletion, but was decreased by the injection of large aggregates of IgG. However, the hepatic uptake of AIgG was not depressed following thermal injury, endotoxemia, or the phagocytosis of EIgG. Thus, AIgG was not sensitive to the effects of injury on Kupffer cell function, whereas the uptake of EIgG by the perfused liver may provide an indication of Kupffer cell Fc receptor function. The depression of Kupffer cell Fc receptor function following injury may contribute to the impairment of host defense caused by injury.  相似文献   

15.
Reactive oxygen species (ROS), which may be involved in ischemic or reperfusion heart injury, can be produced by mitochondria. Previous work indicated that coupled mitochondria from ischemic heart tissue incubated in calcium-free medium produced less ROS than normal. The effects of calcium, which may be elevated in hypoxic or ischemic tissue, were not examined. The relative production of ROS by mitochondria from normoxic or hypoxic rat heart tissue was estimated by measuring the oxidation of dichlorofluorescin to the fluorescent compound, dichlorofluorescein. ROS were detectable during succinate-stimulated State 4 respiration. In the absence of calcium, mitochondria from hypoxic (60 min) heart tissue produced less ROS than mitochondria from normoxic heart tissue. In the presence of 0.1, 1 or 10 microM calcium, ROS produced by hypoxic mitochondria were increased to normoxic levels. While function was depressed in mitochondria from hypoxic tissue, the presence of 0.1 and 1 microM calcium had no further effect. Respiration was uncoupled in the presence of 10 microM calcium in mitochondria from both normoxic and hypoxic heart tissue. ROS production was increased in mitochondria from hypoxic tissue with both increasing concentrations of calcium and increasing duration of exposure. ROS production in mitochondria from normoxic heart tissue was only stimulated after 200 or more seconds of exposure to 1 or 10 microM calcium. Production of ROS in mitochondria from hypoxic tissue in the presence of 1 microM calcium was inhibited by rotenone (80%), ruthenium red (69%), and a combination of these agents (96%). In contrast, ruthenium red had no effect on ROS production by mitochondria from normoxic heart tissue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
The possible relationship of the atractyloside-sensitive adenine nucleotide translocase activity, oxidative phosphorylation, and the recovery of ventricular contractility following reperfusion of the ischemic isolated rat heart was studied. Five minutes of total global ischemia without reperfusion produced a significant depression in adenine nucleotide translocase in subsarcolemmal mitochondria (SLM), whereas a minimum of 10 min ischemia was required to observe a significant depression in interfibrillar mitochondria (IFM). Increasing durations of ischemia resulted in a progressively larger depression in translocase activity, with a maximum depression of approximately 75% seen in both populations following 20 min ischemia. In contrast, oxidative phosphorylation was totally unaffected in either mitochondrial population following up to 20 min of ischemia. We assessed whether translocase activity or oxidative phosphorylation were related to contractile recovery in hearts reperfused following various durations of ischemia. In SLM, translocase activity was further depressed following reperfusion compared with pre-reperfusion ischemic values, whereas with IFM only reperfusion following 5 min ischemia produced a further depression in translocase values. Oxidative phosphorylation rates of SLM and IFM were significantly depressed following reperfusion of ischemic hearts, although SLM exhibited a generally higher sensitivity in this regard. In reperfused hearts, an overall significant relationship was found between oxidative phosphorylation rate and adenine translocase activity as well as between translocase activity and post-reperfusion contractile recovery. These data show that ischemia can produce a significant depression in translocase activity in the absence of any change in oxidative phosphorylation. The results also suggest that the depression in mitochondrial ADP/ATP translocase and subsequent inhibition of oxidative phosphorylation in the reperfused heart may represent one of the important contributory mechanisms involved in cardiac failure and injury during acute ischemia and reperfusion.  相似文献   

18.
Advancing age is a major risk factor for coronary artery disease. Endothelial dysfunction accompanied by increased oxidative stress and inflammation with aging may predispose older arteries to greater ischemia-reperfusion (I/R) injury. Because coronary artery ischemia cannot be induced safely, the effects of age and habitual endurance exercise on endothelial I/R injury have not been determined in humans. Using the brachial artery as a surrogate model of the coronary arteries, endothelial function, assessed by brachial artery flow-mediated dilation (FMD), was measured before and after 20 min of continuous forearm occlusion in young sedentary (n = 10, 24 ± 2 yr) and middle-aged (n = 9, 48 ± 2 yr) sedentary adults to gain insight into the effects of primary aging on endothelial I/R injury. Young (n = 9, 25 ± 1 yr) and middle-aged endurance-trained (n = 9, 50 ± 2 yr) adults were also studied to determine whether habitual exercise provides protection from I/R injury. Fifteen minutes after ischemic injury, FMD decreased significantly by 37% in young sedentary, 35% in young endurance-trained, 68% in middle-aged sedentary, and 50% in middle-aged endurance-trained subjects. FMD returned to baseline levels within 30 min in young sedentary and endurance-trained subjects but remained depressed in middle-aged sedentary and endurance-trained subjects. Circulating markers of antioxidant capacity and inflammation were not related to FMD. In conclusion, advancing age is associated with a greater magnitude and delayed recovery from endothelial I/R injury in humans. Habitual endurance exercise may provide partial protection to the endothelium against this form of I/R injury with advancing age.  相似文献   

19.
This study aims to evaluate the ischemic injury of the liver in a porcine model of cardiac death assessed by in vivo microdialysis. A porcine model of cardiac death was established by the suffocation method. Metabolic indicators were monitored using the microdialysis technique during warm ischemia time (WIT) and cold ischemia time (CIT). Pathological changes in ischemic-injured livers were observed by haematoxylin–eosin staining. The predictive values of biochemical parameters regarding the liver donor were evaluated by receiver operating characteristic curve analysis. All statistical analyses were conducted using the SPSS 18.0 software (SPSS Inc, Chicago, Illinois, USA). The degree of warm ischemic injury of the livers increased with prolonged WIT. Serum glucose, glycerol, pyruvate, lactic acid levels and lactate-to-pyruvate (L/P) ratio increased gradually during WIT. Results from Pearson correlation analyses indicated that serum lactate level and L/P ratio were positively associated with the degree of warm ischemic injury of the livers. The degree of cold ischemic injury of the livers gradually increased after 12 h CIT. Serum glucose, lactic acid and L/P ratio achieved a peak after 6–8 h of CIT, but gradually decreased with prolonged CIT. The peak of glycerol occurred after 8 h of CIT, while no changes were found with prolonged CIT. Serum pyruvate level exhibited an increasing trend after 12 h CIT. Our results confirmed that serum glucose and lactate levels were negatively correlated with cold ischemic injury of the liver. However, serum glycerol and pyruvate levels showed positive correlations with cold ischemic injury of the liver. The liver donor was unavailable after 30 min WIT and 24 h CIT. The cut-off value of serum lactate level for warm ischemic injury of the livers was 2.374 with a sensitivity (Sen) of 90 % and specificity (Spe) of 95 %; while the L/P radio was 0.026 (Sen = 80 %, Spe = 83 %). In addition, the cut-off values of serum glucose, lactate, glycerol and pyruvate levels for cold ischemic injury of the livers were 0.339 (Sen = 100 %, Spe = 77 %), 1.172 (Sen = 100 %, Spe = 61 %), 56.359 (Sen = 100 %, Spe = 65 %) and 0.020 (Sen = 100 %, Spe = 67 %), respectively. Our findings provide empirical evidences that serum glucose, lactate levels and L/P ratio may be good indicators for the degree of warm ischemic injury of the livers after cardiac death; while serum glucose, lactate, glycerol and pyruvate levels may be important in predicting cold ischemic injury.  相似文献   

20.
When applied to ischemic hearts digitalis exhibits depressed inotropic effect and increased toxicity. The molecular basis of these effects was investigated at the level of the digitalis receptors characterized by Na,K-ATPase assays and [3H]ouabain-binding measurements. In sarcolemma obtained from dog hearts rendered ischemic for 15, 30, and 60 min (left anterior descending), two populations (high and low affinity) of digitalis receptors were detected. The apparent affinity (KD, 300 nM) and the binding capacity of the low-affinity sites (responsible for toxicity) remained constant and similar to those found in normal hearts. The KD value of the high-affinity sites, "responsible for inotropy," remained unchanged (2 nM), but the site number sharply decreased (up to 90%). These inotropic sites that account for 66% of the total binding in normals are gradually inactivated, as the duration of ischemia increases. This inactivation would occur in situ since it was detectable in homogenates and was not depressed by the isolation procedure per se. The loss of function of the inotropic sites and the increased contribution of the low-affinity toxic sites represent the setting of a new distribution of the digitalis receptors in the ischemic heart before reperfusion is instituted. This constitutes the molecular basis of the deleterious pharmacological effects observed with digitalis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号