首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The sll1418 gene encodes a PsbP-like protein in Synechocystis sp. PCC 6803. Expression of sll1418 was similar in BG-11 and in Cl- or Ca2+-limiting media, and inactivation of sll1418 did not prevent photoautotrophic growth in normal or nutrient-limiting conditions. Also the wild-type and ΔPsbP strains exhibited similar oxygen evolution and assembly of Photosystem II (PS II) centers. Inactivation of sll1418 in the ΔPsbO: ΔPsbP, ΔPsbQ:ΔPsbP, ΔPsbU:ΔPsbP and ΔPsbV:ΔPsbP mutants did not prevent photoautotrophy or alter PS II assembly and oxygen evolution in these strains. Moreover, the absence of PsbP did not affect the ability of alkaline pH to restore photoautotrophic growth in the ΔPsbO:ΔPsbU strain. The PsbO, PsbU and PsbV proteins are required for thermostability of PS II and thermal acclimation in Synechocystis sp. PCC 6803 [Kimura et al. (2002) Plant Cell Physiol 43: 932–938]. However, thermostability and thermal acclimation in ΔPsbP cells were similar to wild type. These results are consistent with the conclusion that PsbP is associated with ∼3 of PS II centers, and may play a regulatory role in PS II [Thornton et al. (2004) Plant Cell 16: 2164–2175].  相似文献   

3.
The C-terminus region of the D1 protein of Photosystem II (PS II) is situated on the lumenal side of the complex and is likely to be involved in the coordination of the active site Mn atoms of the water oxidation complex (WOC). The strictly conserved arginine at position 334 (D1-334) was targeted for site-directed mutagenesis to explore the hypothesis that it is involved in the PS II extrinsic protein binding, chloride binding, or proton transfer. Although it was found that D1-R334 probably not essential for these functions, mutations at this position were found to uniquely alter the kinetics of S-state cycling in general and the properties of the S2 state in particular. Substitutions of a glutamate (D1-R334E) and a valine (D1-R334V) for D1-R334 lead to an unusually stable (t 1/2 >30 min at room temp) S2 state, but not S3, as measured by double flash measurements on the bare platinum electrode. However, measurements of fluorescence decay in the presence of DCMU suggest the S2 state is only modestly affected by the mutations. Possible reasons for these apparently contradictory results are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
In order to investigate the role and function of the hydrophilic region between transmembrane regions V and CI in the photosystem II core antenna protein CP43, we introduced eight different deletions in psbC of Synechocystis sp; PCC 6803 resulting in a loss of 7–11 codons in evolutionary conserved domains in this region. All deletions resulted in an obligate photoheterotrophic phenotype (requirement of glucose for cell growth) and the absence of any detectable oxygen evolution activity. The various deletion mutations showed a different impact on the amount of CP43 in the thylakoid, ranging from wild-type levels of (a now slightly smaller) CP43 to no detectable CP43 at all. All deletions led to a decrease in the amount of the D1 and D2 proteins in the thylakoids with a larger effect on D2 than on D1. CP47, the other major chlorophyll-binding protein, was present in reduced but significant amounts in the thylakoid. Herbicide binding (diuron) was lost in all but one mutant indicating the PSII components are not assembled into functionally intact complexes. Fluorescence-emission spectra confirmed this notion. This indicates that the large hydrophilic loop of CP43 plays an important role in photosystem II, and even though a shortened CP43 is present in thylakoids of most mutants, functional characteristics resemble that of a mutant with interrupted psbC.Abbreviations CP chlorophyll-binding protein - DCPIP 2,6-dichlorophenolindophenol - DPC diphenylcarbazide - ferricyanide K3Fe(CN)6 - HEPES N-(2-hydroxyelthyl)piperazine-N-(2-hydroxypropane sulfonic acid) - MES 2-(N-morpholino)-ethanesulfonic acid - PCC Pasteur Culture Collection - PCR polymerase chain reaction - PS photosystem - QA first quinone acceptor in PSII - QB second quinone acceptor in PSII - Z redox-active tyrosine (Y161) in D1 serving as electron carrier between the Mn cluster and P680  相似文献   

5.
Many herbicides inhibit the photosynthetic electron transfer in photosystem II by binding to the polypeptide D1. A point mutation in the chloroplast gene psbA, which leads to a change of the amino acid residue 264 of D1 from serine to glycine, is responsible for atrazine resistance in higher plants. We have changed serine 264 to glycine in Synechococcus PCC7942 and compared its phenotype to a mutant with a serine to alanine shift in the same position. The results show that glycine at position 264 in D1 gives rise to a similar phenotype in cyanobacteria and in higher plants, indicating a similar structure of the binding site for herbicides and for the quinone QB in the two systems. A possible mode of binding of phenyl-urea herbicides to D1 is predicted from the difference in herbicidal cross-resistance between glycine and alanine substitutions of serine 264.Abbreviations DCPIP 2,6-dichlorophenolindophenol - I50 concentration of herbicide giving 50% inhibition - Kb binding constant - kb kilobase - MES 2(N-morpholino)ethanesulfonic acid - PS II photosystem II  相似文献   

6.
The PsbP-like protein of the cyanobacterium Synechocystis sp. PCC 6803 is a peripheral component of Photosystem II, located at the lumenal side of the thylakoid membrane. Removal of this protein leads to decreased competitive potential of a PsbP-like deletion mutant when grown in a mixture with wild-type cells. Flash-induced oxygen evolution traces of the mutant show a higher probability of misses, correlated with increased amplitudes of the S-states decay in the dark. Thermoluminescence emission traces demonstrate a changed charge recombination pattern in the mutant, the S(3)Q(B)(-) couple becoming the major species instead of the S(2)Q(B)(-). Our data suggest a possible role of the PsbP-like protein in stabilisation of the charge separation in Photosystem II of cyanobacteria through interaction with the Mn cluster.  相似文献   

7.
The cyanobacteria Synechocystis 6803 and 6714 contain three genes (psbA) coding for the D1 protein. This protein is an essential subunit of photosystem II (PSII) and is the target for herbicides. We have used herbicide-resistant mutants to study the role of the two homologous copies of the psbA genes in both strains (the third copy is not expressed). Several herbicide resistance mutations map within the psbAI gene in Synechocystis 6714 (G. Ajlani et al.), Plant Mol. Biol. 13 (1989): (469–479). We have looked for mutations in copy II. Results show that in Synechocystis 6714, only psbAI contains herbicide resistance mutations. Relative expression of psbAI and psbAII has been measured by analysing the proportions of resistant and sensitive D1 in the thylakoid membranes of the mutants. In normal growth conditions, 95% resistant D1 and 5% sensitive D1 were found. In high light conditions, expression of psbAII was enhanced, producing 15% sensitive D1. This enhancement is specifically due to high light and not to the decrease of D1 concentration caused by photoinhibition. Copy I of Synechocystis 6714 corresponds to copy 2 of Synechocystis 6803 since it was always psbA2 which was recombined in Synechocystis 6803 transformants. PSII of the transformant strains was found to be 95% resistant to herbicides as in resistant mutants of Synechocystis 6714.  相似文献   

8.
9.
10.
11.
A recent proteomic analysis of the thylakoid lumen of Arabidopsis thaliana revealed the presence of several PsbP-like proteins, and a homologue to this gene family was detected in the genome of the cyanobacterium Synechocystis sp. PCC 6803 (Schubert M, Petersson UA, Haas BJ, Funk C, Schröder WP, Kieselbach T (2002) J Biol Chem 277, 8354–8365). Using a peptide-directed antibody against this cyanobacterial PsbP-like protein (sll1418) we could show that it was localized in the thylakoid membrane and associated with Photosystem II. While salt washes did not remove the PsbP-like protein from the thylakoid membrane, it was partially lost during the detergent-based isolation of PSII membrane fractions. In total cell extracts this protein is present in the same amount as the extrinsic PsbO protein. We did not see any significant functional difference between the wild-type and a PsbP-like insertion mutant.  相似文献   

12.
The unicellular cyanobacterium Synechococcus sp. PCC 7942 has three psbA genes encoding two different forms of the photosystem II reaction centre protein D1 (D1:1 and D1:2). The level of expression of these psbA genes and the synthesis of D1:1 and D1:2 are strongly regulated under varying light conditions. In order to better understand the regulatory mechanisms underlying these processes, we have constructed a strain of Synechococcus sp. PCC 7942 capable of over-producing psbA mRNA and D1 protein. In this study, we describe the over-expression of D1:1 using a tac-hybrid promoter in front of the psbAI gene in combination with lacI Q repressor system. Over-production of D1:1 was induced by growing cells for 12 h at 50 mol photons m-2 s-1 in the presence of 40 or 80 g/ml IPTG. The amount of psbAI mRNA and that of D1:1 protein in cells grown with IPTG was three times and two times higher, respectively. A higher concentration of IPTG (i.e., 150 g/ml) did not further increase the production of the psbAI message or D1:1. The over-production of D1:1 caused a decrease in the level of D1:2 synthesised, resulting in most PSII reaction centres containing D1:1. However, the over-production of D1:1 had no effect on the pigment composition (chlorophyll a or phycocyanin/number of cells) or the light-saturated rate of photosynthesis. This and the fact that the total amounts of D1 and D2 proteins were not affected by IPTG suggest that the number of PSII centres within the membranes remained unchanged. From these results, we conclude that expression of psbAI can be regulated by using the tac promoter and lacI Q system. However, the accumulation of D1:1 protein into the membrane is regulated by the number of PSII centres.  相似文献   

13.
The reaction center of photosystem (PS) I is comprised of a heterodimer of homologous polypeptides, PsaA and PsaB. In order to investigate the biogenesis of PS I, the psaB gene was inactivated by targeted mutagenesis in the unicellular cyanobacterium Synechocystis 6803. This mutation resulted in disruption of stable PS I assembly, but PS II assembled normally. Expression of the psaA gene was not affected by the mutation, but PsaA protein was not detected, indicating that stable PsaA homodimers did not form. The ability to inactivate psaB makes it a viable target for site-directed mutagenesis.  相似文献   

14.
15.
Folea IM  Zhang P  Aro EM  Boekema EJ 《FEBS letters》2008,582(12):1749-1754
The supramolecular organization of photosystem II (PSII) complexes in the photosynthetic membrane of the cyanobacterium Synechocystis 6803 was studied by electron microscopy. After mild detergent solubilization, crystalline PSII arrays were extracted in which dimeric PSII particles associate in multiple rows. Image processing of the arrays shows that the PSII dimers are tightly packed at distances of 12.2 and 16.7 nm. The domains are considered to be an important type of association for preventing either spill-over energy from PSII towards photosystem I (PSI) or direct energy flow from phycobilisomes to PSI, because the latter can only be at periphery of the arrays.  相似文献   

16.
Photoinhibition of PSII and turnover of the D1 reaction-centre protein in vivo were studied in pumpkin leaves (Cucurbita pepo L.) acclimated to different growth irradiances and in low-light-grown moss, (Ceratodon purpureus) (Hedw.) Brid. The low-light-acclimated pumpkins were most susceptible to photoinhibition. The production rate of photoinhibited PSII centres (kPI), determined in the presence of a chloroplast-encoded protein-synthesis inhibitor, showed no marked difference between the high- and low-light-grown pumpkin leaves. On the other hand, the rate constant for the repair cycle (kREC) of PSII was nearly three times higher in the high-light-grown pumpkin when compared to low-light-grown pumpkin. The slower degradation rate of the damaged D1 protein in the low-light-acclimated leaves, determined by pulsechase experiments with [35S]methionine suggested that the degradation of the Dl protein retards the repair cycle of PSII under photoinhibitory light. Slow degradation of the D1 protein in low-light-grown pumpkin was accompanied by accumulation of a phosphorylated form of the D1 protein, which we postulate as being involved in the regulation of D1-protein degradation and therefore the whole PSII repair cycle. In spite of low growth irradiance the repair cycle of PSII in the moss Ceratodon was rapid under high irradiance. When compared to the high- or low-light-acclimated pumpkin leaves, Ceratodon had the highest rate of D1-protein degradation at 1000 mol photons m–2 s–1. In contrast to the higher plants, the D1 protein of Ceratodon was not phosphorylated either under high irradiance in vivo or under in-vitro conditions, which readily phosphorylate the D1 protein of higher plants. This is consistent with the rapid degradation of the D1 protein in Ceratodon. Screening experiments indicated that D1 protein can be phosphorylated in the thylakoid membranes of angiosperms and conifers but not in lower plants. The postulated regulation mechanism of D1-protein degradation involving phosphorylation and the role of thylakoid organization in the function of PSII repair cycle are discussed.Abbreviations Chl Chlorophyll - D1* phosphorylated form of D1 protein - Fmax and Fv maximal and variable fluorescence respectively - kPJ and kREC rate constants of photoinhibition and concurrent recovery respectively - LHCII lightharvesting chlorophyll a/bprotein of PSII - PFD photon flux density Dr. R. Barbato (Dipartimento di Biologia, Universita di Padova, Padova, Italy), Prof. P. Böger (Lehrstuhl fur Physiologie und Biochemie der Pflanzen, Universität Konstanz, Konstanz, Germany), Prof. A. Melis (Department of Plant Biology, University of California, Berkeley, USA), Prof. I. Ohad (Department of Biological Chemistry, Hebrew University, Jerusalem, Israel) and Mr. A. Soitamo (Department of Biology, University of Turku, Turku, Finland) are gratefully acknowledged for the D1-protein-specific antibodies. The authors thank Ms. Virpi Paakkarinen for excellent technical assistance. This work was supported by the Academy of Finland and the Foundation of the University of Turku.  相似文献   

17.
The D1 protein, a key subunit of photosystem II reaction center, is synthesized as a precursor form with a carboxyl-terminal extension, in oxygenic photosynthetic organisms with some exceptions. This part of the protein is removed by the action of an endopeptidase, and the proteolytic processing is indispensable for the manifestation of oxygen-evolving activity in photosynthesis. The carboxyl-terminus of mature D1 protein, which appears upon the cleavage, has recently been demonstrated to be a ligand for a manganese atom in the Mn4Ca-cluster, which is responsible for the water oxidation chemistry in photosystem II, based on the isotope-edited Fourier transform infrared spectroscopy and the X-ray crystallography. On the other hand, the structure of a peptidase involved in the cleavage of precursor D1 protein has been resolved at a higher resolution, and the enzyme–substrate interactions have extensively been analyzed both in vivo and in vitro. The present article briefly summarizes the history of research and the present state of our knowledge on the carboxyl-terminal processing of precursor D1 protein in the photosystem II reaction center.  相似文献   

18.
The psbZ gene of Synechocystis sp. PCC 6803 encodes the ∼6.6 kDa photosystem II (PSII) subunit. We here report biophysical, biochemical and in vivo characterization of Synechocystis sp. PCC 6803 mutants lacking psbZ. We show that these mutants are able to perform wild-type levels of light-harvesting, energy transfer, PSII oxygen evolution, state transitions and non-photochemical quenching (NPQ) under standard growth conditions. The mutants grow photoautotrophically; however, their growth rate is clearly retarded under low-light conditions and they are not capable of photomixotrophic growth. Further differences exist in the electron transfer properties between the mutants and wild type. In the absence of PsbZ, electron flow potentially increased through photosystem I (PSI) without a change in the maximum electron transfer capacity of PSII. Further, rereduction of P700+ is much faster, suggesting faster cyclic electron flow around PSI. This implies a role for PsbZ in the regulation of electron transfer, with implication for photoprotection.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号