首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The polymerization of 2-fluoroadenosine 5'-diphosphate by polynucleotide phosphorylase to give high molecular weight poly(2-fluoroadenylic acid), poly(fl2A), is described. Both the single-stranded and double-stranded (acid) forms of poly(fl2A) exhibit strikingly similar ultraviolet and circular dichroism spectra to those of poly(A), and the enzymatic polymerization rates and thermal hyperchromicities of the two polymers are also very similar. However, the pKa of poly(fl2A) for protonation at N-1 is 2.9 compared to 5.9 for poly(A) under similar conditions. Poly(fl2A) forms a triple-stranded helix with poly(U) which has ultraviolet and cd spectra very reminiscent of poly(A) . 2 poly(U), but no conditions could be found which permitted the formation of a double helix. In the Escherichia coli ribosome system poly(fl2A) codes for the synthesis of polylysine, as does poly(A), although the rate and extent of incorporation were less in the former case. The role of basicity of adenine N-1 in these interactions is discussed.  相似文献   

2.
We have solved at 1.07 Å resolution the X-ray crystal structure of a polyriboadenylic acid (poly(rA)) parallel and continuous double helix. Fifty-nine years ago, double helices of poly(rA) were first proposed to form at acidic pH. Here, we show that 7-mer oligo(rA), i.e. rA7, hybridizes and overlaps in all registers at pH 3.5 to form stacked double helices that span the crystal. Under these conditions, rA7 forms well-ordered crystals, whereas rA6 forms fragile crystalline-like structures, and rA5, rA8 and rA11 fail to crystallize. Our findings support studies from ∼50 years ago: one showed using spectroscopic methods that duplex formation at pH 4.5 largely starts with rA7 and begins to plateau with rA8; another proposed a so-called ‘staggered zipper’ model in which oligo(rA) strands overlap in multiple registers to extend the helical duplex. While never shown, protonation of adenines at position N1 has been hypothesized to be critical for helix formation. Bond angles in our structure suggest that N1 is protonated on the adenines of every other rAMP−rAMP helix base pair. Our data offer new insights into poly(rA) duplex formation that may be useful in developing a pH sensor.  相似文献   

3.
We report in the present paper the circular dichroism spectra of poly(X) at different pH and temperature values. The spectra are characteristic of three stable forms of poly(x) in the pH range of protonation of xanthosine. An electrostatic barrier is proposed to account for the hysteresis and metastability observed in a certain pH range. Some results on oligo(X) at basic pH are also presented. Poly(X) at basic pH is investigated also by hydrodynamic techniques.  相似文献   

4.
A model RNA template-primer system is described for the study of RNA-directed double-stranded DNA synthesis by purified avian myeloblastosis virus DNA polymerase and its associated RNase H. In the presence of complementary RNA primer, oligo(rI), and the deoxyribonucleoside triphosphates dGTP, dTTP, and dATP, 3'-(rC)30-40-poly(rA) directs the sequential synthesis of poly(dT) and poly(dA) from a specific site at the 3' end of the RNA template. With this model RNA template-primer, optimal conditions for double-stranded DNA synthesis are described. Analysis of the kinetics of DNA synthesis shows that initially there is rapid synthesis of poly(dT). After a brief time lag, poly(dA) synthesis and the DNA polymerase-associated RNase H activity are initiated. While poly(rA) is directing the synthesis of poly(dT), the requirements for DNA synthesis indicate that the newly synthesized poly(dT) is acting as template for poly(dA) synthesis. Furthermore, selective inhibitor studies using NaF show that activation of RNase H is not just a time-related event, but is required for synthesis of the anti-complementary strand of DNA. To determine the specific role of RNase H in this synthetic sequence, the primer for poly(dA) synthesis was investigated. By use of formamide--poly-acrylamide slab gel electrophoresis, it is shown that poly(dT) is not acting as both template and primer for poly(dA) synthesis since no poly(dT)-poly(dA) covalent linkages are observed in radioactive poly(dA) product. Identification of 2',3'-[32P]AMP on paper chromatograms of alkali-treated poly(dA) product synthesized with [alpha-32P]dATP as substrate demonstrates the presence of rAMP-dAMP phosphodiester linkages in the poly(dA) product. Therefore, a new functional role of RNase H is demonstrated in the RNA-directed synthesis of double-stranded DNA. Not only is RNase H responsible for the degradation of poly(rA) following formation of a poly(rA)-poly(dT) hybrid but also the poly(rA)fragments generated are serving as primers for initiation of synthesis of the second strand of the double-stranded DNA.  相似文献   

5.
Raman spectra of solutions of polyriboadenylic acid have been studied in the pH range of 7.2–5.2. Bands are identified which are sensitive to the characteristics of poly(rA) in the single-and double-stranded helical forms. Thermal melting profiles were obtained as a function of pH to monitor simultaneously the changes in (1) the phosphodiester backbone, (2) the base-stacking interactions, (3) the perturbation of the PO unit, and (4) the degree of protonation at the N-1 position in the adenine base. The temperature dependence of the intensity ratio of the bands at 725 and 705 cm?1 appears to be sensitive to the noncooperative and the cooperative thermal-melting process for the single-and double-stranded forms of poly(rA), respectively. Concurrently, bands diagnostic of the degree of protonation reveal that the cooperative melting process for the “acid” poly(rA) clearly involves deprotonation. The progressive perturbation of the 1100 cm?1 band with an increasing degree of protonation of poly(rA) is consistent with earlier suggestions regarding a PO-(6)-NH2 interaction in the double-helical form of poly(rA). The stability of the double-helix parallels the degree of protonation over the pH range studied as reflected in the tm values, which increase linearly with decreasing pH.  相似文献   

6.
7.
A circular dichroism study of poly dG, poly dC, and poly dG:dC   总被引:22,自引:0,他引:22  
D M Gray 《Biopolymers》1974,13(10):2087-2102
We have measured the ultraviolet circular dichroism spectra of oligo d(pG)5, poly dN AcG, poly dI, poly dC, two samples of poly dG, and four samples containing double-stranded poly dG:dC. We find that oligo d(pG)5 and poly dG exist in self-complexed forms as well as in single-stranded forms. Unlike the self-complexed form of poly dG, the single-stranded form of poly dG can hydrogen-bond with single-stranded poly dC. We present spectral data for double-stranded poly dG:dC, which can be used to help characterize poly dG:dC preparations and which provide a basis for resolving discrepancies among other reported poly dG:dC spectra.  相似文献   

8.
9.
Studies on spin-labeled polyriboadenylic acid   总被引:2,自引:0,他引:2  
A M Bobst 《Biopolymers》1972,11(7):1421-1433
Spin-labeled samples of poly rA, poly rU, and poly rG have been prepared, and physicochemical properties primarily of labeled poly rA are reported. The nitroxide radical, 4-(2-iodoacetamido)-2,2,6,6-tetramethylpiperidinooxyl, is incorporated to a greater extent in poly rA and poly rU, as compared to poly rG. No incorporation is observed in the case of poly rC. Special attention has been paid to the separation of the covalently attached labels from the free labels, and to the preservation of the integrity of the chain length of the labeled polymers. The determination of molar extinction coefficients of the three labeled polymers indicates virtually no difference from those known for the chemically unpertubed polyribonucleotides. The correlation times for the spin-labeled single stranded poly rA and poly rU have been calculated. More mobile building blocks are found in poly rU as compared to poly rA. Conformational properties of labeled poly rA in aqueous solutions have been investigated using electron spin resonance, circular dichroism, and absorption spectroscopy. The objective of the study of labeled poly rA was to examine its conformational transitions upon the uptake of protons by the adenine bases. Based on electron spin resonance data there is strong evidence that the single strand-double strand transition can take place in three steps. In addition to the already known two forms of double-stranded poly rA in acidic solution, called A and B, it is suggested that a third phase, consisting possibly of large aggregates, is involved in the transition of the less protonated double strands to those of complete protonation.  相似文献   

10.
The vibrational cd (VCD) of a double-stranded RNA, poly(rA) - poly(rU), at pH 7 and moderate added salt concentration (0.1M) has been measured in both the base-stretching and phosphate-stretching regions of the ir as a function of temperature. The data in both cases show two distinct phase transitions. The first is from double- to a triple-stranded form, and the second is from triple- to single-stranded forms, which still retain substantial local order even up to 80°C. The nature of these transitions has been identified by comparison of the VCD and ir absorption spectra of the initially double-stranded samples with those of single-stranded poly(rA) and poly(rU) and with triple-stranded poly-(rA) -poly-(rU) poly (rU). The large differences in the VCD band shapes allows positive identification of the intermediate and final states. Thus under VCD-concentration conditions, a simple helix-to-coil transition can be eliminated for poly (rA ) - poly (rU) while such a two-step transition can be seen at low salt conditions. All of these observations are consistent with previous studies of the phase transitions of poly (rA) - poly (rU) under various salt conditions. Additionally, the VCD is indicative of premelting for all the triple-, double-, and single-strand complexes studied. The triple-strand complex did not show disproportionation to double strand on heating under these added salt conditions. The unusual VCD pattern for low temperature poly (rA) - poly (rU), as compared to high G? C content RNAs and DNAs, is qualitatively, but not quantitatively, explained using exciton coupling of localized dipolar transitions in each type of base within the strand. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
We report the results of direct measurements by atomic force microscopy of solvent-driven structural transitions within polyadenylic acid (poly(A)). Both atomic force microscopy imaging and pulling measurements reveal complex strand arrangements within poly(A) induced by acidic pH conditions, with a clear fraction of double-stranded molecules that increases as pH decreases. Among these complex structures, force spectroscopy identified molecules that, upon stretching, displayed two distinct plateau features in the force-extension curves. These plateaus exhibit transition forces similar to those previously observed in native double-stranded DNA (dsDNA). However, the width of the first plateau in the force-extension curves of poly(A) varies significantly, and on average is shorter than the canonical 70% of initial length corresponding to the B-S transition of dsDNA. Also, similar to findings in dsDNA, stretching and relaxing elasticity profiles of dspoly(A) at forces below the mechanical melting transition overlap but reveal hysteresis when the molecules are stretched above the mechanical melting transition. These results strongly suggest that under acidic pH conditions, poly(A) can form duplexes that are mechanically stable. We hypothesize that under acidic conditions, similar structures may be formed by the cellular poly(A) tails on mRNA.  相似文献   

12.
The faculty for and degree of oligo(C)-poly(G) interaction is described as an essentially chain length - sensitive phenomenon. At neutral pH under suitable experimental conditions, oligocytidylates of chain length greater than four associate with poly(G) to form double-stranded structures, as does poly(C). The extent of complex formation increases with degree of polymerization. The complex at acid pH is shown to be triple-stranded, of stoicheometry 2C/1G. The observation of a 2G/1C artifact is discussed.  相似文献   

13.
In this work a confocal Raman microspectrometer is used to investigate the influence of Na(+) and Mg(2+) ions on the DNA structural changes induced by low pH. Measurements are carried out on calf thymus DNA at neutral pH (7) and pH 3 in the presence of low and high concentrations of Na(+) and Mg(2+) ions, respectively. It is found that low concentrations of Na(+) ions do not protect DNA against binding of H(+). High concentrations of monovalent ions can prevent protonation of the DNA double helix. Our Raman spectra show that low concentrations of Mg(2+) ions partly protect DNA against protonation of cytosine (line at 1262 cm(-1)) but do not protect adenine and guanine N(7) against binding of H(+) (characteristic lines at 1304 and 1488 cm(-1), respectively). High concentrations of Mg(2+) can prevent protonation of cytosine and protonation of adenine (disruption of AT pairs). By analyzing the line at 1488 cm(-1), which obtains most of its intensity from a guanine vibration, high magnesium salt protect the N(7) of guanine against protonation. A high salt concentration can prevent protonation of guanine, cytosine, and adenine in DNA. Higher salt concentrations cause less DNA protonation than lower salt concentrations. Magnesium ions are found to be more effective in protecting DNA against binding of H(+) as compared with calcium ions presented in a previous study. Divalent metal cations (Mg(2+), Ca(2+)) are more effective in protecting DNA against protonation than monovalent ions (Na(+)).  相似文献   

14.
Single-strand-preferring ribonucleases of the pancreatic type, structurally and/or catalytically similar to bovine RNase A but endowed with a higher protein basicity, are able to degrade double-stranded RNA (dsRNA) or DNA: RNA hybrids under standard assay conditions (0.15 M NaCl, 0.015 M sodium citrate, pH 7), where RNase A is inactive. This enzyme too, however, becomes quite active if assay conditions are slightly modified or its basicity is increased (polyspermine-RNase). In the attempt to review these facts, we have analyzed and discussed the role that in the process have the secondary structure of dsRNA as well as other variables whose influence has come to light in addition to that of the basicity of the enzyme protein, i.e., the ionic strength, the presence of carbohydrates on the RNase molecule, and the structure (monomeric or dimeric) of the enzyme. A possible mechanism by which dsRNAs are attacked by pancreatic-type RNases has been proposed.Abbreviations RNase Ribonuclease - dsRNA Double-stranded RNA - ssRNA Single-stranded RNA - poly(A) poly(U), poly(I) : poly(C) Double-stranded Homopolymers formed between Polyadenylate and Polyurydilate, and Polyinosinate and Polycytidylate, respectively - poly(dA): poly (rU) Double-stranded complex formed between Polydeoxyriboadenylate and Polyribouridylate - poly(A), poly(C) Polyadenylate and Polycytidylate, respectively - poly[d(A-T)] Double-stranded Homopolymers formed between Polydeoxyriboadenilate and Polydeoxyribothymidylate - poly(dA-dT) : poly (dA-dT) Double-stranded alternating copolymers - SSC 0.15 M Sodium Chloride, 0.015 M Sodium Citrate pH 7  相似文献   

15.
Summary The RNase hydrolysis of random-coil (alkaline form) poly A follows biphasic kinetics at low salt concentrations. However, its resistance to RNase increases with the ionic strength. Helical (acidic form) poly A is also susceptible to RNase but its hydrolysis follows first-order kinetics, and its resistance increases as the pH is lowered. These conformation-dependent kinetics of poly A hydrolysis are similar to those obtained in the hydrolysis of cellular RNA and reovirus double-stranded RNA.  相似文献   

16.
The calf thymus DNA polymerase-alpha-primase complex purified by immunoaffinity chromatography catalyzes the synthesis of RNA initiators on phi X174 single-stranded viral DNA that are efficiently elongated by the DNA polymerase. Trace amounts of ATP and GTP are incorporated into products that are full length double-stranded circular DNAs. When synthetic polydeoxynucleotides are used as templates, initiation and DNA synthesis occurs with both poly(dT) and poly(dC), but neither initiation nor DNA synthesis was observed with poly(dA) and poly(dI) templates. Nitrocellulose filter binding and sucrose gradient centrifugation studies show that the DNA polymerase-primase complex binds to deoxypyrimidine polymers, but not to deoxypurine polymers. Using d(pA)-50 with 3'-oligo(dC) tails and d(pI)-50 with 3'-oligo(dT) tails, initiator synthesis and incorporation of deoxynucleotide can be demonstrated when the average pyrimidine sequence lengths are 8 and 4, respectively. These results suggest that purine polydeoxynucleotides are used as templates by the DNA polymerase only after initiation has occurred on the oligodeoxypyrimidine sequence and that the pyrimidine stretch required by the primase activity is relatively short. Analysis of initiator chain length with poly(dC) as template showed a series of oligo(G) initiators of 19-27 nucleotides in the absence of dGTP, and 5-13 nucleotides in the presence of dGTP. The chain length of initiators synthesized by the complex when poly(dT) or oligodeoxythymidylate-tailed poly(dI) was used can be as short as a dinucleotide. Analysis of the products of replication of oligo(dC)-tailed poly(dA) shows that initiator with chain length as low as 4 can be used for initiation by the polymerase-primase complex.  相似文献   

17.
A quenching of poly A emission at 293K in neutral pH by transition metal ions and alkaline earth ions has been studied. The results indicate that the longer wavelength emission of poly A is quenched by not only Co(II) and Ni(II) but also Mg(II). The measured large values of quenching efficiency suggest that the excitation energy migrate more than 10 adenine bases even at 293K.  相似文献   

18.
The acid-base titration (pH 8 --> pH 2.5 --> pH 8) of eleven mixing curve samples of the poly(dG) plus poly(dC) system has been performed in 0.15 M NaCl. Upon protonation, poly(dG).poly(dC) gives rise to an acid complex, in various amounts according to the origin of the sample. We have established that the hysteresis of the acid-base titration is due to the non-reversible formation of an acid complex, and the liberation of the homopolymers at the end of the acid titration and during the base titration: the homopolymer mixtures remain stable up to pH 7. A 1G:1C stoichiometry appears to be the most probable for the acid complex, a 1G:2C stoichiometry, as found in poly(C(+)).poly(I).poly(C) or poly(C(+)).poly(G).poly(C), cannot be rejected. In the course of this study, evidence has been found that the structural consequences of protonation could be similar for both double stranded poly(dG).poly(dC) and G-C rich DNA's: 1) protonation starts near pH 6, dissociation of the acid complex of poly(dG).poly(dC) and of protonated DNA take place at pH 3; 2) the CD spectrum computed for the acid polymer complex displays a positive peak at 255 nm as found in the acid spectra of DNA's; 3) double stranded poly(dG).poly(dC) embedded in triple-stranded poly(dG).poly(dG).poly(dC) should be in the A-form and appears to be prevented from the proton induced conformational change. The neutral triple stranded poly(dG).poly(dG).poly(dC) appears therefore responsible, although indirectly, for the complexity and variability of the acid titration of poly(dG).poly(dC) samples.  相似文献   

19.
Human seminal ribonuclease (a basic protein occurring in a glycosylated and in a non-glycosylated form) is very active against double-stranded RNAs (De Prisco, R., Sorrentino, S., Leone, E. and Libonati, M. (1984) Biochim. Biophys. Acta 788, 356-363). The action of the two enzyme forms on single-stranded and double-stranded substrates was studied as a function of pH and ionic strength. Results indicate (1) that glycosylation of the RNAase molecule does not affect enzyme action on single-stranded RNAs, while (2) degradation of double-stranded RNAs is moderately increased by the presence of carbohydrates in the enzyme molecule. Human seminal RNAase shows a marked helix-destabilizing activity on poly(dA-dT) X poly(dA-dT). Under various conditions, this action (1) is definitely stronger than that of bovine RNAase A, and (2) seems to be less dependent on the glycosylation than on the basicity of the enzyme protein. The remarkable activity of human seminal RNAase on double-stranded RNA may, at least partly, be related to the enzyme properties mentioned above.  相似文献   

20.
The main forms of base damage in polydeoxyadenylic acid gamma-irradiated under hypoxic conditions are due to saturation and fragmentation of the adenine imidazole ring. An irradiated polymer was annealed with an equimolar amount of poly (dT) to generate a double-stranded polydeoxyribonucleotide containing scattered damaged base residues. On incubation of the latter with partially purified cell extracts of E.coli, imidazole ring-opened adenine, i.e. 4,6-diamino-5-formamidopyrimidine, was released in free form by a DNA glycosylase activity. The enzyme has been purified 4,500-fold, has Mr = 29,000, and appears to be identical with the previously described DNA repair enzyme formamidopyrimidine-DNA glycosylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号