首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most vertebrates have two nasal epithelia: the olfactory epithelium (OE) and the vomeronasal epithelium (VNE). The apical surfaces of OE and VNE are covered with cilia and microvilli, respectively. In rodents, signal transduction pathways involve G alpha olf and G alpha i2/G alpha o in OE and VNE, respectively. Reeve's turtles (Geoclemys reevesii) live in a semiaquatic environment. The aim of this study was to investigate the localization of G proteins and the morphological characteristics of OE and VNE in Reeve's turtle. In-situ hybridization analysis revealed that both G alpha olf and G alpha o are expressed in olfactory receptor neurons (ORNs) and vomeronasal receptor neurons (VRNs). Immunocytochemistry of G alpha olf/s and G alpha o revealed that these two G proteins were located at the apical surface, cell bodies, and axon bundles in ORNs and VRNs. Electron microscopic analysis revealed that ORNs had both cilia and microvilli on the apical surface of the same neuron, whereas VRNs had only microvilli. Moreover G alpha olf/s was located on only the cilia of OE, whereas G alpha o was not located on cilia but on microvilli. Both G alpha olf/s and G alpha o were located on microvilli of VNE. These results imply that, in Reeve's turtle, both G alpha olf/s and G alpha o function as signal transduction molecules for chemoreception in ORNs and VRNs.  相似文献   

2.
Two G protein subfamilies, Go(alpha) and Gi(alpha 2), were identified and localized immunohistochemically in the vomeronasal organ (VNO) of 5-month-old human fetuses. Immunoreactivity for Go(alpha) and Gi(alpha 2) was present in a subset of vomeronasal epithelial cells. Prominent immunoreactivity was observed in apical processes and their apical terminals facing onto the vomeronasal lumen. Nerve fibers associated with the VNO exhibited intense immunoreactivity for Go(alpha) and weak immunoreactivity for Gi(alpha 2). Since Go(alpha) and Gi(alpha 2) are characteristically expressed and coupled with putative pheromone receptors in rodent vomeronasal receptor neurons, the present results suggest the possibility that vomeronasal epithelial cells containing Go(alpha) and Gi(alpha 2) in human fetuses are chemosensory neurons.  相似文献   

3.
Immunohistochemical properties of monoclonal antibodies raised against the rat vomeronasal epithelium were examined in adult rats. Three monoclonal antibodies, VOBM1, VOBM2, and VOM2, reacted specifically to the luminal surface of the sensory epithelium of the vomeronasal organ. In addition, the reactivities of VOBM1 and VOBM2 were detected in the vomeronasal nerve layer and the glomerular layer of the accessory olfactory bulb. Electron-microscopic study revealed differential patterns of the immunoreactivity of the three antibodies to the microvilli of vomeronasal sensory epithelium. VOBM1 immunoreactivity was found on the microvilli of the supporting cells, whereas VOBM2 immunoreactivity was found on those of the sensory cells. VOM2 immunoreactivity was observed on the microvilli of both the sensory and supporting cells. These results suggest that the three antibodies recognize different antigens on the vomeronasal sensory epithelium. In particular, VOBM2 antibody appears to react to an antigen specific to the microvilli of the vomeronasal sensory cells.  相似文献   

4.
We previously reported that the xanthine nucleotide binding G(o)alpha mutant, G(o)alphaX, inhibited the activation of G(i)-coupled receptors. We constructed similar mutations in G(11)alpha and G(16)alpha and characterized their nucleotide binding and receptor interaction. First, we found that G(11)alphaX and G(16)alphaX expressed in COS-7 cells bound xanthine 5'-O-(thiotriphosphate) instead of guanosine 5'-O-(thiotriphosphate). Second, we found that G(11)alphaX and G(16)alphaX interacted with betagamma subunits in the presence of xanthine diphosphate. These experiments demonstrated that G(11)alphaX and G(16)alphaX were xanthine nucleotide-binding proteins, similar to G(o)alphaX. Third, in COS-7 cells, both G(11)alphaX and G(16)alphaX inhibited the activation of G(q)-coupled receptors, whereas only G(16)alphaX inhibited the activation of G(i)-coupled receptors. Therefore, when in the nucleotide-free state, empty G(11)alphaX and G(16)alphaX appeared to retain the same receptor binding specificity as their wild-type counterparts. Finally, we found that G(o)alphaX, G(11)alphaX, and G(16)alphaX all inhibited the endogenous thrombin receptors and lysophosphatidic acid receptors in NIH3T3 cells, whereas G(11)alphaX and G(16)alphaX, but not G(o)alphaX, inhibited the activation of transfected m1 muscarinic receptor in these cells. We conclude that these empty G protein mutants of G(o)alpha, G(11)alpha, and G(16)alpha can act as dominant negative inhibitors against specific subsets of G protein-coupled receptors.  相似文献   

5.
Antibodies directed against the C-terminal and the N-terminal regions of the mu-opioid receptor were generated to identify the G proteins that coimmunoprecipitate with the mu receptor. Two fusion proteins were constructed: One contained the 50 C-terminal amino acids of the mu receptor, and the other contained 61 amino acids near the N terminus of the receptor. Antisera directed against both fusion proteins were capable of immunoprecipitating approximately 70% of solubilized rat brain mu receptors as determined by [3H][D-Ala2,N-Me-Phe4,Gly-ol5]-enkephalin ([3H]DAMGO) saturation binding. The material immunoprecipitated with both of the antisera was recognized as a broad band with a molecular mass between 60 and 75 kDa when screened in a western blot. Guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) had an EC50 of 0.4 nM in diminishing [3H]DAMGO binding to the immunoprecipitated pellet. The ratio of G proteins to mu receptors in the immunoprecipitated material was 1:1. When the material immunoprecipitated with affinity-purified antibody was screened for the presence of G protein a subunits, it was determined that G(alpha)o, G(alpha)i1, G(alpha)i3, and to a lesser extent G(alpha)i2, but not G(alpha)s or G(alpha)q11, were coimmunoprecipitated with the mu receptor. Inclusion of GTPgammaS during the immunoprecipitation process abolished the coimmunoprecipitation of G proteins.  相似文献   

6.
To assess the relative capacity of the human delta opioid receptor to activate closely related G proteins, fusion proteins were constructed in which the alpha-subunits of either G(i1) or G(o1), containing point mutations to render them insensitive to the actions of pertussis toxin, were linked in-frame with the C-terminus of the receptor. Following transient and stable expression in HEK 293 cells, both constructs bound the antagonist [(3)H]naltrindole with high affinity. D-ala(2),D-leu(5) Enkephalin effectively inhibited forskolin-stimulated adenylyl cyclase activity in intact cells in a concentration-dependent, but pertussis toxin-insensitive, manner. The high-affinity GTPase activity of both constructs was also stimulated by D-ala(2),D-leu(5) enkephalin with similar potency. However, enzyme kinetic analysis of agonist stimulation of GTPase activity demonstrated that the GTP turnover number produced in response to D-ala(2),D-leu(5) enkephalin was more than three times greater for G(i1)alpha than for G(o1)alpha. As the effect of agonist in both cases was to increase V:(max) without increasing the observed K:(m) for GTP, this is consistent with receptor promoting greater guanine nucleotide exchange, and thus activation, of G(i1)alpha compared with G(o1)alpha. An equivalent fusion protein between the human mu opioid receptor-1 and G(i1)alpha produced a similar D-ala(2),D-leu(5) enkephalin-induced GTP turnover number as the delta opioid receptor-G(i1)alpha fusion construct, consistent with agonist occupation of these two opioid receptor subtypes being equally efficiently coupled to activation of G(i1)alpha.  相似文献   

7.
G protein-coupled receptors (GPCRs) convey extracellular stimulation into dynamic intracellular action, leading to the regulation of cell migration and differentiation. T lymphocytes express G alpha(i2) and G alpha(i3), two members of the G alpha(i/o) protein family, but whether these two G alpha(i) proteins have distinguishable roles guiding T cell migration remains largely unknown because of a lack of member-specific inhibitors. This study details distinct G alpha(i2) and G alpha(i3) effects on chemokine receptor CXCR3-mediated signaling. Our data showed that G alpha(i2) was indispensable for T cell responses to three CXCR3 ligands, CXCL9, CXCL10, and CXCL11, as the lack of G alpha(i2) abolished CXCR3-stimulated migration and guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) incorporation. In sharp contrast, T cells isolated from G alpha(i3) knock-out mice displayed a significant increase in both GTPgammaS incorporation and migration as compared with wild type T cells when stimulated with CXCR3 agonists. The increased GTPgammaS incorporation was blocked by G alpha(i3) protein in a dose-dependent manner. G alpha(i3)-mediated blockade of G alpha(i2) activation did not result from G alpha(i3) activation, but instead resulted from competition or steric hindrance of G alpha(i2) interaction with the CXCR3 receptor via the N terminus of the second intracellular loop. A mutation in this domain abrogated not only G alpha(i2) activation induced by a CXCR3 agonist but also the interaction of G alpha(i3) to the CXCR3 receptor. These findings reveal for the first time an interplay of G alpha(i) proteins in transmitting G protein-coupled receptor signals. This interplay has heretofore been masked by the use of pertussis toxin, a broad inhibitor of the G alpha(i/o) protein family.  相似文献   

8.
The pharmacology of G protein-coupled receptors is widely accepted to depend on the G protein subunit to which the agonist-stimulated receptor couples. In order to investigate whether CB(1) agonist-mediated signal transduction via an engineered G(alpha 16) system is different than that of the G(i/o) coupling normally preferred by the CB(1) receptor, we transfected the human recombinant CB(1) receptor (hCB(1)) or a fusion protein comprising the hCB(1) receptor and G(alpha 16) (hCB(1)-G(alpha 16)) into HEK293 cells. From competition binding studies, the rank order of ligand affinities at the hCB(1)-G(alpha 16) fusion protein was found to be similar to that for hCB(1): HU 210 > CP 55,940 > or = SR 141716A > WIN 55212-2 > anandamide > JWH 015. Agonists increased [(35)S]GTP gamma S binding or inhibited forskolin-stimulated cAMP, presumably by coupling to G(i/o), in cells expressing hCB(1) but not hCB(1)-G(alpha 16). However, an analogous rank order of potencies was observed for these agonists in their ability to evoke increases in intracellular calcium concentration in cells expressing hCB(1)-G(alpha 16) but not hCB(1). These data demonstrate that ligand affinities for the hCB(1) receptor are not affected by fusion to the G(alpha 16) subunit. Furthermore, there is essentially no difference in the function of the hCB(1) receptor when coupled to G(i/o) or G (alpha 16).  相似文献   

9.
Hematopoietic cells uniquely express G(alpha16), a G protein alpha-subunit of the G(q)-type. G(alpha16) is obligatory for P2Y2 receptor-dependent Ca2+-mobilization in human erythroleukemia cells and induces hematopoietic cell differentiation. We tested whether P2Y2 receptors physically interact with G(alpha16). Receptor and G protein were fused to cyan (CFP) and yellow (YFP) variants of the green fluorescent protein (GFP), respectively. When expressed in K562 leukemia cells, the fusion proteins were capable of triggering a Ca2+-signal upon receptor stimulation, demonstrating their functional integrity. In fluorescence resonance energy transfer (FRET) measurements using confocal microscopy, a strong FRET signal from the plasma membrane region of fixed, resting cells was detected when the receptor was co-expressed with the G protein as the FRET acceptor, as well as when the CFP-tagged receptor was co-expressed with receptor fused to YFP. We conclude that, under resting conditions, G(alpha16) and P2Y2 receptors form constitutive complexes, and that the P2Y2 receptor is present as an oligomer.  相似文献   

10.
Several social and reproductive behaviors are under the influence of the vomeronasal (VN) organ; VN neurons detect odorous molecules emitted by individuals of the same species. There are two types of VN neurons, and these differ in their expression of chemosensory receptors and G protein subunits. The significance of this dichotomy is largely unknown. VN neurons express high levels of either G alpha i2 or G alpha o. A mouse line carrying a targeted disruption of the G alpha i2 gene offered the opportunity for studying the effects of a lack of receptor signaling through the heterotrimeric Gi2 protein in one VN cell type. As a consequence of this deficiency, the number of VN neurons that normally express G alpha i2 is decreased by half. These residual neurons are defective in eliciting a response in their target neurons in the accessory olfactory bulb. Moreover, G alpha i2 mutant mice show alterations in behaviors for which an intact VN organ is known to be important. Display of maternal aggressive behavior is severely blunted, and male mice show significantly less aggression toward an intruder. However, male mice show unaltered sexual-partner preference. This suggests that the two types of VN neurons may have separate functions in mediating behavioral changes in response to chemosensory information.  相似文献   

11.
12.
The purpose of the present study was to examine the role of G(i2)alpha in Ca(2+) channel regulation using G(i2)alpha gene knockout mouse ventricular myocytes. The whole cell voltage-clamp technique was used to study the effects of the muscarinic agonist carbachol (CCh) and the beta-adrenergic agonist isoproterenol (Iso) on cardiac L-type Ca(2+) currents in both 129Sv wild-type (WT) and G(i2)alpha gene knockout (G(i2)alpha-/-) mice. Perfusion with CCh significantly inhibited the Ca(2+) current in WT cells, and this effect was reversed by adding atropine to the CCh-containing solution. In contrast, CCh did not affect Ca(2+) currents in G(i2)alpha-/- ventricular myocytes. Addition of CCh to Iso-containing solutions attenuated the Iso-stimulated Ca(2+) current in WT cardiomyocytes but not in G(i2)alpha-/- cells. These findings demonstrate that, whereas the Iso-G(s)alpha signal pathway is intact in G(i2)alpha gene knockout mouse hearts, these cells lack the inhibitory regulation of Ca(2+) channels by CCh. Therefore, G(i2)alpha is necessary for the muscarinic regulation of Ca(2+) channels in the mouse heart. Further studies are needed to delineate the possible interaction of G(i) and other cell signaling proteins and to clarify the level of interaction of G protein-coupled regulation of L-type Ca(2+) current in the heart.  相似文献   

13.
Chemosensory neurons of the vomeronasal organ (VNO) are supposed to detect pheromones controlling social and reproductive behavior in most terrestrial vertebrates. Recent studies indicate that pheromone signaling in VNO neurons is mediated via phospholipase C (PLC) activation generating the two second messengers inositol-1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). Since G alpha(i) and G alpha(o) predominantly expressed in VNO neurons are usually not involved in activating PLC, it was explored if PLC activation may be mediated by G beta gamma subunits. It was found that a scavenger for beta gamma dimers reduced the urine-induced IP3 formation in VNO preparations in a dose-dependent manner indicating a role for G beta gamma complexes. Towards an identification of the relevant G beta and G gamma subunit(s), PCR approaches as well as immunohistochemical experiments were performed. It was found that out of the five known G beta subtypes, only G beta2 was expressed in both G alpha(i) as well as G alpha(o) neurons. Experimental approaches focusing on the spatial expression profile of identified G gamma subtypes revealed that G gamma8-positive neurons are preferentially localized to the basal region of the vomeronasal epithelium, whereas G gamma2-reactive cells are restricted to the apical G alpha(i)-positive layer of the sensory epithelium. As IP3 formation induced upon stimulation with volatile urinary compounds was selectively blocked by G gamma2-specific antibodies whereas second messenger formation elicited upon stimulation with alpha2u globulin was inhibited by antibodies recognizing G gamma8, it is conceivable that PLC activation in the two populations of chemosensory VNO neurons is mediated by different G beta gamma complexes.  相似文献   

14.
The G(alpha)o/i-coupled CB1 cannabionoid receptor induces neurite outgrowth in Neuro-2A cells. The mechanisms of signaling through G(alpha)o/i to induce neurite outgrowth were studied. The expression of G(alpha)o/i reduces the stability of its direct interactor protein, Rap1GAPII, by targeting it for ubiquitination and proteasomal degradation. This results in the activation of Rap1. G(alpha)o/i-induced activation of endogenous Rap1 in Neuro-2A cells is blocked by the proteasomal inhibitor lactacystin. G(alpha)o/i stimulates neurite outgrowth that is blocked by the expression of dominant negative Rap1. Expression of Rap1GAPII also blocks the G(alpha)o/i-induced neurite outgrowth and treatment with proteasomal inhibitors potentiates this inhibition. The endogenous G(alpha)o/i-coupled cannabinoid (CB1) receptor in Neuro-2A cells stimulates the degradation of Rap1GAPII; activation of Rap1 and treatment with pertussis toxin or lactacystin blocks these effects. The CB1 receptor-stimulated neurite outgrowth is blocked by treatment with pertussis toxin, small interfering RNA for Rap, lactacystin, and expression of Rap1GAPII. Thus, the G(alpha)o/i-coupled cannabinoid receptor, by regulating the proteasomal degradation of Rap1GAPII, activates Rap1 to induce neurite outgrowth.  相似文献   

15.
The exocytotic release of potent hormones is a tightly controlled process. Its direct regulation without the involvement of second messengers would ensure rapid signal processing. In streptolysin O-permeabilized insulin-secreting cells, a preparation allowing dialysis of cytosolic macromolecules, activation of alpha 2-adrenergic receptors caused pertussis toxin-sensitive inhibition of calcium-induced exocytosis. This inhibition was mimicked very efficiently by the use of specific receptor-mimetic peptides, indicating the involvement of Gi and, to a lesser extent, of G(o). The regulation was exerted beyond the ATP-dependent step of exocytosis. In addition, low nanomolar amounts of pre-activated Gi/G(o) directly inhibited exocytosis. As transient overexpression of constitutively active mutants of G alpha i1, G alpha i2, G alpha i3 and G alpha o2 but not of G alpha o1 reproduced this regulation, the G alpha subunit alone is sufficient to induce inhibition. These results define exocytosis as an effector for heterotrimeric G-proteins and delineate the properties of the transduction pathway.  相似文献   

16.
Platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycerolphosphocholine; PAF) induces leukocyte accumulation and activation at sites of inflammation via the activation of a specific cell surface receptor (PAFR). PAFR couples to both pertussis toxin-sensitive and pertussis toxin-insensitive G proteins to activate leukocytes. To define the role(s) of G(i) and G(q) in PAF-induced leukocyte responses, two G-protein-linked receptors were generated by fusing G alpha(i3) (PAFR-G alpha(i3)) or G alpha(q) (PAFR-G alpha(q)) at the C terminus of PAFR. Rat basophilic leukemia cell line (RBL-2H3) stably expressing wild-type PAFR, PAFR-G alpha(i3), or PAFR-G alpha(q) was generated and characterized. All receptor variants bound PAF with similar affinities to mediate G-protein activation, intracellular Ca2+ mobilization, phosphoinositide (PI) hydrolysis, and secretion of beta-hexosaminidase. PAFR-G alpha(i3) and PAFR-G alpha(q) mediated greater GTPase activity in isolated membranes than PAFR but lower PI hydrolysis and secretion in whole cells. PAFR and PAFR-G alpha(i3), but not PAFR-G alpha(q), mediated chemotaxis to PAF. All three receptors underwent phosphorylation and desensitization upon exposure to PAF but only PAFR translocated beta arrestin to the cell membrane and internalized. In RBL-2H3 cells coexpressing the PAFRs along with CXCR1, IL-8 (CXCL8) cross-desensitized Ca2+ mobilization to PAF by all the receptors but only PAFR-G alpha(i3) activation cross-inhibited the response of CXCR1 to CXCL8. Altogether, the data indicate that G(i) exclusively mediates chemotactic and cross-regulatory signals of the PAFR, but both G(i) and G(q) activate PI hydrolysis and exocytosis by this receptor. Because chemotaxis and cross-desensitization are exclusively mediated by G(i), the data suggest that differential activation of both G(i) and G(q) by PAFR likely mediate specific as well as redundant signaling pathways.  相似文献   

17.
Halpern  M; Shapiro  LS; Jia  C 《Chemical senses》1998,23(4):477-481
The mammalian accessory olfactory bulb (AOB) is chemoarchitecturally heterogeneous in that it stains differentially with a number of markers; the receptor cells that project to the AOB are similarly heterogeneous. What is the significance of this heterogeneity? We have found that the AOB of the gray, short-tailed opossum, Monodelphis domestica, stains differentially with a number of 'markers': antibodies to olfactory marker protein (OMP) and the alpha subunit of the G protein Gi2, the lectin of Vicia villosa and NADPH-diaphorase. These markers stain the rostral AOB more strongly than the caudal AOB whereas, the G protein subunit G(o) alpha is located predominantly in the posterior subdivision of the AOB. This heterogeneity in the chemoarchitecture of the AOB may reflect a fundamental organizational dichotomy within the vomeronasal system that corresponds to a functional dichotomy. The vomeronasal sensory epithelium also exhibits a chemoarchitectural heterogeneity: receptor cells in the basal third are G(o) alpha-immunoreactive whereas the cells in the middle third are Gi2 alpha-immunoreactive. Tracing studies using WGA-HRP demonstrate that the neurons in the middle third of the vomeronasal sensory epithelium project their axons to the anterior AOB whereas those in the basal third appear to project to the posterior AOB.   相似文献   

18.
Heterotrimeric G proteins play a pivotal role in GPCR signalling; they link receptors to intracellular effectors and their inactivation by RGS proteins is a key factor in resetting the pathway following stimulation. The precise GPCR:G protein:RGS combination determines the nature and duration of the response. Investigating the activity of particular combinations is difficult in cells which contain multiples of each component. We have therefore utilised a previously characterised yeast system to express mammalian proteins in isolation. Human G alpha(q) and G alpha(11) spontaneously activated the yeast pheromone-response pathway by a mechanism which required the formation of G alpha-GTP. This provided an assay for the specific activity of human RGS proteins. RGS1, RGS2, RGS3 and RGS4 inhibited the spontaneous activity of both G alpha(q) and G alpha(11) but, in contrast, RGS5 and RGS16 were much less effective against G alpha(11) than G alpha(q). Interestingly, RGS2 and RGS3 were able to inhibit signalling from the constitutively active G alpha(q)QL/G alpha(11)QL mutants, confirming the GAP-independent activity of these RGS proteins. To determine if the RGS-G alpha specificity was maintained under conditions of GPCR stimulation, minor modifications to the C-terminus of G alpha(q)/G alpha(11) enabled coupling to an endogenous receptor. RGS2 and RGS3 were effective inhibitors of both G alpha subunits even at high levels of receptor stimulation, emphasising their GAP-independent activity. At low levels of stimulation RGS5 and RGS16 retained their differential G alpha activity, further highlighting that RGS proteins can discriminate between two very closely related G alpha subunits.  相似文献   

19.
Recombinant RGS1, RGS16 and RGS-GAIP, but not RGS2, were able to substantially further stimulate the maximal GTPase activity of G(o1)alpha promoted by agonists at the alpha2A-adrenoreceptor in a concentration-dependent manner. Kinetic analysis of the regulation of an alpha2A-adrenoreceptor-G(o1)alpha fusion protein by all three RGS proteins revealed that they had similar affinities for the receptor-G protein fusion. However, their maximal effects on GTP hydrolysis varied over threefold with RGS16 > RGS1 > RGS-GAIP. Both RGS1 and RGS16 reduced the potency of the alpha2A-adrenoreceptor agonist adrenaline by some 10-fold. A lower potency shift was observed for the partial agonist UK14304 and the effect was absent for the weak partial agonist oxymetazoline. Each of these RGS proteins altered the intrinsic activity of both UK14304 and oxymetazoline relative to adrenaline. Such results require the RGS interaction with G(o1)alpha to alter the conformation of the alpha2A-adrenoreceptor and are thus consistent with models invoking direct interactions between RGS proteins and receptors. These studies demonstrate that RGS1, RGS16 and RGS-GAIP show a high degree of selectivity to regulate alpha2A-adrenoreceptor-activated G(o1)alpha rather than G(i1)alpha, G(i2)alpha or G(i3)alpha and different capacities to inactivate this G protein.  相似文献   

20.
The human formyl peptide receptor (FPR) is a prototypical G(i) protein-coupled receptor, but little is known about quantitative aspects of FPR-G(i) protein coupling. To address this issue, we fused the FPR to G(i)alpha(1), G(i)alpha(2), and G(i)alpha(3) and expressed the fusion proteins in Sf9 insect cells. Fusion of a receptor to Galpha ensures a defined 1:1 stoichiometry of the signaling partners. By analyzing high affinity agonist binding, the kinetics of agonist- and inverse agonist-regulated guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) binding and GTP hydrolysis and photolabeling of Galpha, we demonstrate highly efficient coupling of the FPR to fused G(i)alpha(1), G(i)alpha(2), and G(i)alpha(3) without cross-talk of the receptor to insect cell G proteins. The FPR displayed high constitutive activity when coupled to all three G(i)alpha isoforms. The K(d) values of high affinity agonist binding were approximately 100-fold lower than the EC(50) (concentration that gives half-maximal stimulation) values of agonist for GTPase activation. Based on the B(max) values of agonist saturation binding and ligand-regulated GTPgammaS binding, it was previously proposed that the FPR activates G proteins catalytically, i.e. one FPR activates several G(i) proteins. Analysis of agonist saturation binding, ligand-regulated GTPgammaS saturation binding and quantitative immunoblotting with membranes expressing FPR-G(i)alpha fusion proteins and nonfused FPR now reveals that FPR agonist binding greatly underestimates the actual FPR expression level. Our data show the following: (i) the FPR couples to G(i)alpha(1), G(i)alpha(2), and G(i)alpha(3) with similar efficiency; (ii) the FPR can exist in a state of low agonist affinity that couples efficiently to G proteins; and (iii) in contrast to the previously held view, the FPR appears to activate G(i) proteins linearly and not catalytically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号