共查询到20条相似文献,搜索用时 15 毫秒
1.
H. J. Schatzmann 《The Journal of membrane biology》1977,35(1):149-158
Summary (Ca2++Mg2+)-stimulated ATPase of human red cell membranes as a function of ATP concentration was measured at fixed Ca2+ concentration and at two different but constant Mg2+ concentrations. Under the assumption that free ATP rather than Mg-ATP is the substrate, a value forK
m
(for ATP) of 1–2m is found which is in good agreement with the value obtained in the phosphorylation reaction by A.F. Rega and P.J. Garrahan (1975.J. Membrane Biol.
22:313). Mg2+ increases both the maximal rate and the affinity for ATP, whereas Ca2+ increases the maximal rate without affectingK
m
for ATP.As a by-product of these experiments, it was shown that after thorough removal of intracellular proteins the adenylate kinase reaction at approximately 1mm substrate concentration is several times faster than maximal rate of (Ca2++Mg2+)-ATPase in red cell membranes. 相似文献
2.
3.
Phosphorylation of the isolated high-affinity (Ca2+ + Mg2+) ATPase of the human erythrocyte membrane
Solubilized and purified high-affinity (Ca2+ + Mg2+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) of the human erythrocyte membrane (Wolf, H.U., Dieckvoss, G. and Lichtner, R. (1977) Acta Biol. Ger. 36, 847) has been phosphorylated and dephosphorylated under various conditions with respect to Ca2+ and Mg2+ concentrations. In the range, 0.001--100 mM, the rate of phosphorylation was dependent on Ca2+ concentration, showing a maximum at 10 mM. The phosphorylation rate was nearly independent of the Mg2+ concentration within the range 0.01-1 mM. This enzyme has at least three Ca2+ binding sites with different affinities and regulatory functions: (1) binding to the high-affinity site yields phosphorylation of the enzyme; (2) binding to a low-affinity site (Ca2+ concentrations higher than 40 microM) inhibits dephosphorylation or the conformational change which is necessary for dephosphorylation; (3) by binding to an additional low-affinity site, Ca2+ at concentrations higher than 1 mM abolishes negative cooperative behaviour (shown below 1 mM Ca2+) and causes weak positive cooperativity between at least two catalytic subunits in the phosphorylation reaction. The phosphoprotein obtained at Ca2+ concentrations above 1 mM dephosphorylates spontaneously after removal of the divalent metal ions. Addition of Mg2+ accelerates the dephosphorylation rate. Affinities of the inhibitory Ca2+ binding sites are reduced by the binding of substrate or K+. 相似文献
4.
An Na+-stimulated Mg2+-transport system in human red blood cells 总被引:5,自引:0,他引:5
The initial rate of net Mg2+ efflux was measured in human red blood cells by atomic absorption. In fresh erythrocytes incubated in Na+,K+-Ringer's medium this rate was 7.3 +/- 2.8 mumol/l cells per h (mean +/- S.D. of 14 subjects) with an energy of activation of 13 200 cal/mol. Cells with total Mg2+ contents ([ Mg]i) ranging from 1.8 to 24 mmol/l cells were prepared by using a modified p-chloromercuribenzenesulphonate method. Mg2+ efflux was strongly stimulated by increases in [Mg]i and in external Na+ concentrations ([ Na]o). A kinetic analysis of Mg2+ efflux as a function of [Mg]i and [Na]o revealed the existence of two components: an Na+-stimulated Mg2+ efflux, which exhibited a Michaelian-like dependence of free internal Mg2+ content (apparent dissociation constant = 2.6 +/- 1.4 mmol/l cells; mean +/- S.D. of six subjects) and on external Na+ concentration (apparent dissociation constant = 20.5 +/- 1.9 mM; mean +/- S.D. of four subjects) and a variable maximal rate ranging from 35 to 370 mumol/l cells per h, and an Na+-independent Mg2+ efflux, which showed a linear dependence on internal Mg2+ content with a rate constant of (6.6 +/- 0.7) X 10(-3) h-1. Fluxes catalyzed by the Na+-stimulated Mg2+ carrier were partially dependent on the ATP content of the cells and completely inhibited by quinidine (IC50 = 50 microM) and by Mn2+ (IC50 = 0.5-1.0 mM). 相似文献
5.
ATPase activity in rat heart sarcoplasmic reticulum was stimulated in a concentration-dependent manner by both Ca2+ and Mg2+ in the complete absence of the other cation. Increasing concentrations of Mg2+ produced an apparent inhibition of the Ca2+-dependent ATP hydrolysis. CDTA (trans-1,2-diaminocyclohexane-N,N,N,N-tetraacetate) had no effect on these responses. The results indicate the presence of a low affinity non-specific divalent cation-stimulated ATPase in rat heart sarcoplasmic reticulum. However, sarcoplasmic reticulum vesicles transported Ca2+ with a high affinity (K0.5 Ca2+ = 0.41 M) suggesting the presence of a high affinity Ca2+-transporting ATPase. Calmodulin did not stimulate rat heart sarcoplasmic reticulum ATPase activity over a range of Ca2+ and Mg2+ concentrations and failed to stimulate membrane phosphorylation and Ca2+ transport into sarcoplasmic reticulum vesicles. Calmodulin antagonists trifluoperazine and compound 48180 did not affect the ATPase activity. Catalytic subunit of cAMP-dependent protein kinase was also ineffective in stimulating the ATPase activity. These results suggest the presence of an ATPase activity in rat heart sarcoplasmic reticulum with different properties from the high affinity Ca2+-pumping ATPase previously characterized in dog heart and other species.Abbreviations cAMP
adenosine 3,5-monophosphate
- CaM
calmodulin
- CDTA
trans-1,2-diaminocyclohexane-N,N,N,N-tetraacetate
- EDTA
ethylene-diaminetetraacetate
- EGTA
ethylene glycol bis(-aminoethyl ether)-N,N,N,N-tetraacetate
- PLB
phospholamban
- SR
sarcoplasmic reticulum
- TFP
trifluoperazine 相似文献
6.
Carlos Humberto Pedemonte Héctor Federico Balegno 《Molecular and cellular biochemistry》1981,40(2):105-1071
Summary The effect of Ca2+ on the stability of the Ca2+-stimulated ATPase has been investigated. Our results showed that the preincubation of the rat red cell membranes in presence of Ca2+ causes an irreversible inhibition of the enzyme. The same effect was obtained with Ba2+ instead of Ca2+. Once initiated the inactivation of the enzyme could be halted by the addition of ethylene glycol bis (B-amino ethyl ether) N,N-tetra acitic acid (EGTA), but inactivation was irreversible. The presence of ATP in the preincubation with Ca2+ prevented the inactivation but calmodulin did not. 相似文献
7.
8.
The effect of purified calmodulin on the calcium-dependent phosphorylation of human erythrocyte membranes was studied. Under the conditions employed, only one major peak of phosphorylation was observed when solubilized membrane proteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular weight of this phosphorylated protein band was estimated to be 130000 and in the presence of purified red blood cell calmodulin, the rate of phosphorylation of this band was increased. These data suggest that calmodulin activation of (Ca2+ + Mg2+)-ATPase could be a partial reflection of an increased rate of phosphorylation of the (Ca2+ + Mg2+)-ATPase of human erythrocyte membranes. 相似文献
9.
We find that both human red blood cells and rabbit skeletal muscle contain a soluble activator which can stimulate (Ca2+ + Mg2+)-ATPase activity. The activator protein from either source can enhance the (Ca2+ + Mg2+)-ATPase of both the red blood cell membrane and the microsomal fraction from skeletal muscle. The data suggest that they are members of the class of Ca2+-binding modulator proteins. A possible physiological role for the skeletal muscle activator protein in the contractile process is discussed. 相似文献
10.
Ca2+-stimulated, Mg2+-dependent ATPase activity in neutrophil plasma membrane vesicles. Coupling to Ca2+ transport 总被引:1,自引:0,他引:1
Low concentrations of free Ca2+ stimulated the hydrolysis of ATP by plasma membrane vesicles purified from guinea pig neutrophils and incubated in 100 mM HEPES/triethanolamine, pH 7.25. In the absence of exogenous magnesium, apparent values obtained were 320 nM (EC50 for free Ca2+), 17.7 nmol of Pi/mg X min (Vmax), and 26 microM (Km for total ATP). Studies using trans- 1,2-diaminocyclohexane- N,N,N',N',-tetraacetic acid as a chelator showed this activity was dependent on 13 microM magnesium, endogenous to the medium plus membranes. Without added Mg2+, Ca2+ stimulated the hydrolysis of several other nucleotides: ATP congruent to GTP congruent to CTP congruent to ITP greater than UTP, but Ca2+-stimulated ATPase was not coupled to uptake of Ca2+, even in the presence of 5 mM oxalate. When 1 mM MgCl2 was added, the vesicles demonstrated oxalate and ATP-dependent calcium uptake at approximately 8 nmol of Ca2+/mg X min (based on total membrane protein). Ca2+ uptake increased to a maximum of approximately 17-20 nmol of Ca2+/mg X min when KCl replaced HEPES/triethanolamine in the buffer. In the presence of both KCl and MgCl2, Ca2+ stimulated the hydrolysis of ATP selectively over other nucleotides. Apparent values obtained for the Ca2+-stimulated ATPase were 440 nM (EC50 for free Ca2+), 17.5 nmol Pi/mg X min (Vmax) and 100 microM (Km for total ATP). Similar values were found for Ca2+ uptake which was coupled efficiently to Ca2+-stimulated ATPase with a molar ratio of 2.1 +/- 0.1. Exogenous calmodulin had no effect on the Vmax or EC50 for free Ca2+ of the Ca2+-stimulated ATPase, either in the presence or absence of added Mg2+, with or without an ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N',-tetraacetic acid pretreatment of the vesicles. The data demonstrate that calcium stimulates ATP hydrolysis by neutrophil plasma membranes that is coupled optimally to transport of Ca2+ in the presence of concentrations of K+ and Mg2+ that appear to mimic intracellular levels. 相似文献
11.
Phosphorylated intermediate of (Ca2+ + K+)-stimulated Mg2+-dependent transport ATPase in endoplasmic reticulum from rat pancreatic acinar cells 总被引:1,自引:0,他引:1
Formation and decomposition of the phosphorylated intermediate of endoplasmic reticulum (Ca2+ + Mg2+)-ATPase from pancreatic acinar cells have been studied using lithium dodecyl sulfate- and tetradecyltrimethylammonium bromide-polyacrylamide gel electrophoresis. Incorporation of 32P from [gamma-32P]ATP is Ca2+-dependent (approximate Km for free [Ca2+] = 2-3 X 10(-8) mol/liter). Formation of the 100-kDa phosphoprotein is rapid, reaching maximal 32Pi incorporation within 1 s at room temperature. At 4 degrees C, phosphorylation is slower and dephosphorylation is drastically decreased. For dephosphorylation, Mg2+ and monovalent cations such as K+ or Na+ are necessary. Vanadate inhibits both 32P incorporation and 32P liberation dose dependently (Km = 3 X 10(-6) mol/liter), whereas mitochondrial inhibitors and ouabain have no effect. The phosphoprotein is stable at pH 2 and destabilizes with increasing pH being completely decomposed at pH 9. Reduction of 32P incorporation in the presence of high concentrations of cold ATP and hydroxylamine suggests formation of acylphosphate present in the ATPase intermediate. The characteristics of Ca2+, cation, and pH dependencies of the ATPase activity are similar to those previously described for MgATP-dependent Ca2+ transport into rough endoplasmic reticulum from pancreatic acinar cells (Bayerd?rffer, E., Streb, H., Eckhardt, L., Haase, W., and Schulz, I. (1984) J. Membr. Biol. 81, 69-82). The data suggest that the 100-kDa phosphoprotein as described in this study is the intermediate of this Ca2+ transport ATPase. 相似文献
12.
13.
In reconstituted human red blood cells a difference was found in (Ca2+ + Mg2+)-ATPase activity and in Ca2+ efflux at 37 degrees C, depending on the side of the membrane at which the monovalent cations K+ and Na+ were placed. Under the conditions used, (Ca2+ + Mg2+)-ATPase activity and Ca2+ efflux was highest when K+ (35 +/- 0.5 mM (+/- S.E.), mean of four experiments) was at the inside and Na+ (130 mM) at the outside of the ghost membrane. 相似文献
14.
In reconstituted human red blood cells a difference was found in (Ca2+ + Mg2+)-ATPase activity and in Ca2+ efflux at 37°C, depending on the side of the membrane at which the monovalent cations K+ and Na+ were placed. Under the conditions used, (Ca2+ + Mg2+)-ATPase activity and Ca2+ efflux was highest when K+ (, mean of four experiments) was at the inside and Na+ (130 mM) at the outside of the ghost membrane. 相似文献
15.
16.
Anion dependence of Ca2+ transport and (Ca2+ + K+)-stimulated Mg2+-dependent transport ATPase in rat pancreatic endoplasmic reticulum 总被引:2,自引:0,他引:2
T P Kemmer E Bayerd?rffer H Will I Schulz 《The Journal of biological chemistry》1987,262(28):13758-13764
Anion dependence of (Ca2+ + K+)-stimulated Mg2+-dependent transport ATPase and its phosphorylated intermediate have been characterized in both "intact" and "broken" vesicles from endoplasmic reticulum of rat pancreatic acinar cells using adenosine 5'-[gamma-32P] triphosphate ([gamma-32P]ATP). In intact vesicles (Ca2+ + K+)-Mg2+-ATPase activity was higher in the presence of Cl- or Br- as compared to NO3-, SCN-, cyclamate-, SO4(2-) or SO3(2-). Incorporation of 32P from [gamma-32P]ATP into the 100-kDa intermediate of this Ca2+ATPase was also higher in the presence of Cl-, Br-, NO3- or SCN- as compared to cyclamate-, SO4(2-) or SO3(2-). When the membrane permeability barrier to anions was abolished by breaking vesicle membrane with the detergent Triton X-100 (0.015%) (Ca2+ + K+)-Mg2+ATPase activity in the presence of weakly permeant anions, such as SO4(2-) and cyclamate-, increased to the level obtained with Cl-. However, 32P incorporation into 100-kDa protein was still higher in the presence of Cl- as compared to cyclamate-, indicating a direct effect of Cl- on the Ca2+ATPase molecule. The anion transport blocker 4,4-diisothiocyanostilbene-2,2-disulfonate (DIDS) inhibited (Ca2+ + K+)-Mg2+ATPase activity to about 10% of the Cl- stimulation level, irrespective of the sort of anions present in both intact and broken vesicles. This indicates a direct effect of DIDS on (Ca2+ + K+)-Mg2+ATPase. K+ ionophore valinomycin influenced (Ca2+ + K+)-Mg2+ATPase activity according to the actual K+ gradient: Ko+ greater than Ki+ caused inhibition, Ko+ less than Ki+ caused stimulation. From these results we conclude that Ca2+ transport into endoplasmic reticulum is coupled to ion movements which must occur to maintain electroneutrality. 相似文献
17.
A monoclonal antibody to the calmodulin-binding (Ca2+ + Mg2+)-dependent ATPase from pig stomach smooth muscle inhibits plasmalemmal (Ca2+ + Mg2+)-dependent ATPase activity. 下载免费PDF全文
J Verbist F Wuytack L Raeymaekers F Van Leuven J J Cassiman R Casteels 《The Biochemical journal》1986,240(3):633-640
A monoclonal antibody (2B3) directed against the calmodulin-binding (Ca2+ + Mg2+)-dependent ATPase from pig stomach smooth muscle was prepared. This antibody reacts with a 130,000-Mr protein that co-migrates on SDS/polyacrylamide-gel electrophoresis with the calmodulin-binding (Ca2+ + Mg2+)-ATPase purified from smooth muscle by calmodulin affinity chromatography. The antibody causes partial inhibition of the (Ca2+ + Mg2+)-ATPase activity in plasma membranes from pig stomach smooth muscle, in pig erythrocytes and human erythrocytes. It appears to be directed against a specific functionally important site of the plasmalemmal Ca2+-transport ATPase and acts as a competitive inhibitor of ATP binding. Binding of the antibody does not change the Km of the ATPase for Ca2+ and its inhibitory effect is not altered by the presence of calmodulin. No inhibition of (Ca2+ + Mg2+)-ATPase activity or of the oxalate-stimulated Ca2+ uptake was observed in a pig smooth-muscle vesicle preparation enriched in endoplasmic reticulum. These results confirm the existence in smooth muscle of two different types of Ca2+-transport ATPase: a calmodulin-binding (Ca2+ + Mg2+)-ATPase located in the plasma membrane and a second one confined to the endoplasmic reticulum. 相似文献
18.
Cell membrane Ca2+/Mg2+ ATPase 总被引:1,自引:0,他引:1
19.
Evidence that the platelet plasma membrane does not contain a (Ca2+ + Mg2+)-dependent ATPase 总被引:1,自引:0,他引:1
The present study was designed to determine the subcellular distribution of the platelet (Ca2+ + Mg2+)-ATPase. Human platelets were surface labeled by the periodate-boro[3H]hydride method. Plasma membrane vesicles were then isolated to a purity of approx. 90% by a procedure utilizing wheat germ agglutinin affinity chromatography. These membranes were found to be 2.6-fold enriched in surface glycoproteins compared to an unfractionated vesicle fraction and almost 7-fold enriched compared to intact platelets. In contrast, the isolated plasma membranes showed a decreased specific activity of the (Ca2+ + Mg2+)-ATPase compared to the unfractionated vesicle fraction. This decrease in specific activity was found to be similar to that of an endoplasmic reticulum marker, glucose-6-phosphatase, and to that of a platelet inner membrane marker, phospholipase A2. We conclude, therefore, that the (Ca2+ + Mg2+)-ATPase is not located in the platelet plasma membrane but is restricted to membranes of intracellular origin. 相似文献
20.
An isolated plasma membrane fraction from bovine thyroid glands contained a Ca2+-stimulated, Mg2+-dependent adenosine triphosphatase ((Ca2+ + Mg2+)-ATPase) activity which was purified in parallel to (Na+ + K+)-ATPase and adenylate cyclase. The (Ca2+ + Mg2+)-ATPase activity was maximally stimulated by approx. 200 microM added calcium in the presence of approx. 200 microM EGTA (69.7 +/- 5.2 nmol/mg protein per min). In EGTA-washed membranes, the enzyme was stimulated by calmodulin and inhibited by trifluoperazine. 相似文献