首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Lee TG  Lee YJ  Kim DY  Seo YW 《Genetica》2010,138(11-12):1277-1296
Physical maps of chromosomes provide a framework for organizing and integrating diverse genetic information. DNA microarrays are a valuable technique for physical mapping and can also be used to facilitate the discovery of single feature polymorphisms (SFPs). Wheat chromosome arm 2BL was physically mapped using a Wheat Genome Array onto near-isogenic lines (NILs) with the aid of wheat-rice synteny and mapped wheat EST information. Using high variance probe set (HVP) analysis, 314 HVPs constituting genes present on 2BL were identified. The 314 HVPs were grouped into 3 categories: HVPs that match only rice chromosome 4 (298 HVPs), those that match only wheat ESTs mapped on 2BL (1), and those that match both rice chromosome 4 and wheat ESTs mapped on 2BL (15). All HVPs were converted into gene sets, which represented either unique rice gene models or mapped wheat ESTs that matched identified HVPs. Comparative physical maps were constructed for 16 wheat gene sets and 271 rice gene sets. Of the 271 rice gene sets, 257 were mapped to the 18-35?Mb regions on rice chromosome 4. Based on HVP analysis and sequence similarity between the gene models in the rice chromosomes and mapped wheat ESTs, the outermost rice gene model that limits the translocation breakpoint to orthologous regions was identified.  相似文献   

2.
Genotyping was performed for the leaf rust-resistant line 73/00i (Triticum aestivum x Aegilops speltoides). Fluorescence in situ hybridization (FISH) with probes Spelt1 and pSc119.2 in combination with microsatellite analysis were used to determine the locations and sizes of the Ae. speltoides genetic fragments integrated into the line genome. Translocations were identified in the long arms of chromosomes 5B and 6B and in the short arm of chromosome 1B. The Spelt1 and pSc119.2 molecular cytological markers made it possible to rapidly establish lines with single translocation in the long arms of chromosomes 5B and 6B. The line carrying the T5BS x 5BL-5SL translocation was highly resistant to leaf rust, and the lines carrying the T6BS x 6BL-6SL translocation displayed moderate resistance. The translocations differed in chromosomal location from known leaf resistance genes transferred into common wheat from Ae. speltoides. Hence, it was assumed that new genes were introduced into the common wheat genome from Ae. speltoides. The locus that determined high resistance to leaf rust and was transferred into the common wheat genome from the long arm of Ae. speltoides chromosome 5S by the T5BS x 5BL-5SL translocation was preliminarily designated as LrAsp5.  相似文献   

3.
Genotyping was performed for the leaf rust-resistant line 73/00i (Triticum aestivum × Aegilops speltoides). Fluorescence in situ hybridization (FISH) with probes Spelt1 and pSc119.2 in combination with microsatellite analysis were used to determine the locations and sizes of the Ae. speltoides genetic fragments integrated into the line genome. Translocations were identified in the long arms of chromosomes 5B and 6B and in the short arm of chromosome 1B. The Spelt1 and pSc119.2 molecular cytological markers made it possible to rapidly establish lines with single translocation in the long arms of chromosomes 5B and 6B. The line carrying the T5BS · 5BL-5SL translocation was highly resistant to leaf rust, and the lines carrying the T6BS · 6BL-6SL translocation displayed moderate resistance. The translocations differed in chromosomal location from known leaf resistance genes transferred into common wheat from Ae. speltoides. Hence, it was assumed that new genes were introduced into the common wheat genome from Ae. speltoides. The locus that determined high resistance to leaf rust and was transferred into the common wheat genome from the long arm of Ae. speltoides chromosome 5S by the T5BS · 5BL-5SL translocation was preliminarily designated as LrAsp5.  相似文献   

4.
E D Nagy  M Molnár-Láng  G Linc  L Láng 《Génome》2002,45(6):1238-1247
Five wheat-barley translocations in a wheat background were characterized through the combination of cytogenetic and molecular genetic approaches. The wheat chromosome segments involved in the translocations were identified using sequential GISH and two-colour FISH with the probes pSc119.2 and pAs1. The barley chromatin in these lines was identified using SSR markers. A total of 45 markers distributed over the total barley genome were selected from a recently published linkage map of barley and tested on the translocation lines. The following translocations were identified: 2DS.2DL-1HS, 3HS.3BL, 6BS.6BL-4HL, 4D-5HS, and 7DL.7DS-5HS. Wheat-barley disomic and ditelosomic addition lines for the chromosomes 3HS, 4H, 4HL, 5H, 5HL, and 6HS were used to determine the correct location of 21 markers and the position of the centromere. An intragenomic translocation breakpoint was detected on the short arm of the barley chromosome 5H with the help of SSR marker analysis. Physical mapping of the SSR markers on chromosomes 1H and 5H was carried out using the intragenomic and the interspecific translocation breakpoints, as well as the centromere, as physical landmarks.  相似文献   

5.
Six doubled-haploid (DH) lines, derived by anther culture from octoploid triticale x wheat hybrids, were characterized using cytological, biochemical and molecular techniques. Lines varied in their wheat and rye genome composition, and were either wheat-rye chromosome multiple addition lines or had spontaneous substitutions and/or wheat-rye translocations. Most of the lines contained a pair of 4R chromosomes, whereas 1R or 7R were present in others. The results are similar to those previously obtained with hexaploid triticale x wheat crosses and indicate that it is possible to produce alien (wheat/rye) addition, substitution, and translocation lines directly from the anther culture of intergeneric hybrids.  相似文献   

6.
R C Leach  I S Dundas  A Houben 《Génome》2006,49(7):729-734
The physical length of the rye segment of a 4BS.4BL-5RL translocation derived from the Cornell Wheat Selection 82a1-2-4-7 in a Triticum aestivum 'Chinese Spring' background was measured using genomic in situ hybridization (GISH) and found to be 16% of the long arm. The size of this translocation was similar to previously published GISH measurements of another 4BS.4BL-5RL translocation in a Triticum aestivum 'Viking' wheat background. Molecular maps of both 4BS.4BL-5RL translocations for 2 different wheat backgrounds were developed using RFLP analysis. The locations of the translocation breakpoints of the 2 4BS.4BL-5RL translocations were similar even though they arose in different populations. This suggests a unique property of the region at or near the translocation breakpoint that could be associated with their similarity and spontaneous formation. These segments of rye chromosome 5 also contain a gene for copper efficiency that improves the wheat's ability to cope with low-copper soils. Genetic markers in these maps can also be used to screen for copper efficiency in bread wheat lines derived from the Cornell Wheat Selection 82a1 2-4-7.  相似文献   

7.
Powdery mildew is one of the serious diseases of wheat (Triticum aestivum L., 2n = 6 × = 42, genomes AABBDD). Rye (Secale cereale L., 2n = 2 × = 14, genome RR) offers a rich reservoir of powdery mildew resistant genes for wheat breeding program. However, extensive use of these resistant genes may render them susceptible to new pathogen races because of co-evolution of host and pathogen. Therefore, the continuous exploration of new powdery mildew resistant genes is important to wheat breeding program. In the present study, we identified several wheat-rye addition lines from the progeny of T. aestivum L. Mianyang11 × S. cereale L. Kustro, i.e., monosomic addition lines of the rye chromosomes 4R and 6R; a disomic addition line of 6R; and monotelosomic or ditelosomic addition lines of the long arms of rye chromosomes 4R (4RL) and 6R (6RL). All these lines displayed immunity to powdery mildew. Thus, we concluded that both the 4RL and 6RL arms of Kustro contain powdery mildew resistant genes. It is the first time to discover that 4RL arm carries powdery mildew resistant gene. Additionally, wheat lines containing new wheat-rye translocation chromosomes were also obtained: these lines retained a short arm of wheat chromosome 5D (5DS) on which rye chromosome 4R was fused through the short arm 4RS (designated 5DS-4RS·4RL; 4RL stands for the long arm of rye chromosome 4R); or they had an extra short arm of rye chromosome 4R (4RS) that was attached to the short arm of wheat chromosome 5D (5DS) (designated 4RS-5DS·5DL; 5DL stands for the long arm of wheat chromosome 5D). These two translocation chromosomes could be transmitted to next generation stably, and the wheat lines containing 5DS-4RS·4RL chromosome also displayed immunity to powdery mildew. The materials obtained in this study can be used for wheat powdery mildew resistant breeding program.  相似文献   

8.
The Ph1 locus in hexaploid wheat (Triticum aestivum L.) enforces diploid-like behavior in the first metaphase of meiosis. To test the hypothesis that this chromosome pairing control is exercised by affecting the degree of chromatin condensation, the dispersion of rye chromatin in interphase nuclei in somatic tissues of wheat-rye chromosome translocations 1RS.1BL, 2RS.2BL, 2BS.2RL, 3RS.3DL and 5RS.5BL was compared in Ph1 and ph1b isogenic backgrounds. No significant differences in rye chromatin condensation that could be attributed to the Ph1 locus were detected. Regardless of the Ph1 status, each rye chromosome arm tested conformed to the general Rabl's orientation and occupied portions of the nuclei proportional to their length. Earlier observations that indicated the involvement of Ph1 locus in rye chromatin condensation in wheat could have been due either to specific loci on the studied 5RL rye arm that control the chromosome condensation process or to damage to the genetic system controlling chromatin condensation in the existing ph1b stocks of wheat. That damage might have been caused by homoeologous recombination and uneven disjunction of chromosomes from multivalents.  相似文献   

9.
Radiation-induced wheat-rye chromosome translocation lines resistant to Hessian fly, Mayetiola destructor (say), were analyzed by in situ hybridization using total genomic and highly repetitive rye DNA probes pSc119 and pSc74. In situ hybridization analysis revealed the exact locations of the translocation breakpoints and allowed the estimation of the sizes of the transferred rye segments. T6BS·6BL-6RL and T4BS· 4BL-6RL are terminal translocations with either most of the complete long arm of rye chromosome 6R or only the distal 57% of the 6RL arm attached to the long arms of wheat chromosomes 6B and 4B, respectively. The breakpoint in T6BS·6BL-6RL is located at a fraction length (FL) of 0.11 in the long arm of T6BS 6BL-6RL and at FL 0.46 in the long arm of T4BS·4BL-6RL. Ti4AS·4AL-6RL-4AL is an intercalary translocation with the breakpoint located at FL 0.06 in the long arm of wheat chromosome 4A. The inserted 6RL segment, with the Hessian fly resistance gene, has a size of 0.7 m, and is the smallest and, so far, the first radiation-induced intercalary translocation identified in wheat.by R. Apples  相似文献   

10.
Summary Chromosome pairing between rye chromosome arm 1RS, present in two wheat-rye translocation stocks, and its wheat homoeologues was induced by introducing the translocations into either a ph1bph1b or a nullisomic 5B background. This rye arm carries a gene conferring resistance to wheat stem rust, but lines carrying the translocation produce a poor quality dough unsuitable for breadmaking. Storage protein markers were utilised along with stem rust reaction to screen for allosyndetic recombinants. From a 1DL-1RS translocation, three lines involving wheat-rye recombination were recovered, along with thirteen lines derived from wheat-wheat homoeologous recombination. From a 1BL-1RS translocation, an additional three allosyndetic recombinants were recovered. Nullisomy for chromosome 5B was as efficacious as the ph1b mutant for induction of allosyndesis, and the former stock is easier to manipulate due to the presence of a 5BL-encoded endosperm protein. The novel wheat-rye chromosomes present in the recombinant lines may enable the rye disease resistance to be exploited without the associated dough quality defect.  相似文献   

11.
Two rye genome-specific random amplified polymorphic DNA (RAPD) markers were identified for detection of rye introgression in wheat. Both markers were amplified in all of the tested materials that contained rye chromatin such as rye, hexaploid triticale, wheat-rye addition lines, and wheat varieties with 1BL.1RS translocation. Two cloned markers, designated pSc10C and pSc20H, were 1012 bp and 1494 bp, respectively. Sequence analysis showed that both pSc10C and pSc20H fragments were related to retrotransposons, ubiquitously distributed in plant genomes. Using fluorescence in situ hybridization (FISH), probe pSc10C was shown to hybridize predominantly to the pericentromeric regions of all rye chromosomes, whereas probe pSc20H was dispersed throughout the rye genome except at telomeric regions and nucleolar organizing regions. The FISH patterns showed that the two markers should be useful to select or track all wheat-rye translocation lines derived from the whole arms of rye chromosomes, as well as to characterize the positions of the translocation breakpoints generated in the proximal and distal regions of rye arms.  相似文献   

12.
Univalent chromosomes at meiotic metaphase I have a tendency to misdivide at the centromeres. Fusion of the misdivision products may produce Robertsonian translocations. The fine structure of the centromeres in Robertsonian wheat-rye translocation chromosomes was analyzed by fluorescence in situ hybridization (FISH) using two centromere-specific DNA clones: pRCS1, derived from rice, and pAWRC1, derived from rye. Clone pRCS1 hybridizes to the centromeres of all grasses including wheat and rye, whereas clone pAWRC1 is rye specific and hybridizes only to the centromeres of rye. Four of the six wheat-rye translocations derived from a single centric misdivision event (1st generation translocations) had hybrid centromeres, with approximately half of the centromere derived from rye and half from wheat. In the two other 1st generation translocations, the entire centromere was derived from rye. Among eight reconstructed wheat and rye chromosomes that originated from two consecutive centric misdivision-fusion events (2nd generation translocations), T1BS.1BL (derived from T1BS.1RL and T1RS.1BL) and one of three T2BS.2BL (derived from T2RS.2BL and T2BS.2RL) had hybrid centromeres. T1RS.1RL (derived from T1BS.1RL and T1RS.1BL), two of three T2BS.2BL, and all three T2RS.2RL (derived from T2RS.2BL and T2BS.2RL) had rye centromeres. All three 3rd generation translocations had hybrid centromeres with approximately half of the centromere derived from rye. There were no indications that the composite structure of the centromere in these chromosomes affected their behavior in mitosis or meiosis. These observations support the notion of a compound structure of the centromere in higher organisms, and indicate that during the centric breakage-fusion event, centromere breakage may occur in different positions along the segment of the chromosome that interacts with the spindle fibers. Normal behavior of the 1st, 2nd, and 3rd generation centric translocations in mitosis and meiosis indicates that, at least in wheat and rye, centromeres are not chromosome specific.  相似文献   

13.
小麦主栽品种中的1RS分布和兰考90(6)系列白粉病新抗源   总被引:5,自引:0,他引:5  
利用黑麦染色体臂1RS的特异性PCR标记,对黄淮麦区138个小麦主栽品种、系进行了PCR扩增,结果表明:有42.0%的小麦品种、系携带1RS染色体臂。以六倍体小黑麦Mzalenod Beer为黑麦染色体供体,培育的兰考90(6)系列小麦品系是新的小麦-黑麦1BL/1RS易位系。这些品系对小麦白粉病具有很高的抗性,是小麦抗白粉病育种的新抗源。对兰考90(6)系列品系白粉病抗性进行了研究,结果表明,兰考90(6)系列品系的抗谱与许多已经知道的小麦抗白粉病基因的抗谱不同,并具有数量抗性特点。  相似文献   

14.
以普通小麦A552为父本、IRS/IBL黑麦和小麦易位系早抗为母本的杂种S3063,经C-分带和原位杂交鉴定,发现丢失了母本的黑麦成分,同时又发生了小麦种内易位,变成了5BS/7BS、5BL/7BL臂间双易位系。与此同时,白粉病抗性和一些农艺性状也发生了变化,此已己连续3年对白粉病免疫,且免疫条锈、叶锈和高抗黄矮病,每公顷5523千克,接近北京推广品种京冬6号  相似文献   

15.
Construction and uses of new compound B-A-A maize chromosome translocations   总被引:1,自引:0,他引:1  
Sheridan WF  Auger DL 《Genetics》2006,174(4):1755-1765
Maize B-A translocations result from reciprocal interchanges between a supernumerary B chromosome and an arm of an essential A chromosome. Because of the frequent nondisjunction of the B centromere at the second pollen mitosis, B-A translocations have been used to locate genes to chromosome arms and to study the dosage effects of specific A segments. Compound B-A translocations (B-A-A translocations) are created by bringing together a simple B-A translocation with an A-A translocation in which breakpoints in the A-A and B-A translocations are in the same arm. Recombination in the region of shared homology of these A chromosome segments creates a B-A-A translocation. Success in creating and testing for a new B-A-A translocation requires that the B-A translocation be proximal to the A-A translocation and that the A-A translocation be proximal to the tester locus. The breakpoints of most of the A-A translocations have been cytologically defined by earlier investigators. Previous investigators have produced 16 B-A-A translocations and one B-A-A-A translocation, which collectively define 35 A chromosome breakpoints. We have enlarged this group by creating 64 new B-A-A translocations. We present a summary of the total of 81 B-A-A translocations showing their distribution among the chromosome arms and the 163 cytologically defined chromosome segments delimited by them. We also illustrate the method of construction of these B-A-A stocks and their uses.  相似文献   

16.
Summary Using in situ hybridization techniques, we have been able to identify the translocated chromosomes resulting from whole arm interchanges between homoeologous chromosomes of wheat and rye. This was possible because radioactive probes are available which recognize specific sites of highly repeated sequence DNA in either rye or wheat chromosomes. The translocated chromosomes analysed in detail were found in plants from a breeding programme designed to substitute chromosome 2R of rye into commercial wheat cultivars. The distribution of rye highly repeated DNA sequences showed modified chromosomes in which (a) most of the telomeric heterochromatin of the short arm and (b) all of the telomeric heterochromatin of the long arm, had disappeared. Subsequent analyses of these chromosomes assaying for wheat highly repeated DNA sequences showed that in type (a), the entire short arm of 2R had been replaced by the short arm of wheat chromosome 2B and in (b), the long arm of 2R had been replaced by the long arm of 2B. The use of these probes has also allowed us to show that rye heterochromatin has little effect on the pairing of the translocated wheat arm to its wheat homologue during meiosis. We have also characterized the chromosomes resulting from a 1B-1R translocation event.From these results, we suggest that the observed loss of telomeric heterochromatin from rye chromosomes in wheat is commonly due to wheat-rye chromosome translocations.  相似文献   

17.
H J Li  B H Guo  Y W Li  L Q Du  X Jia  C C Chu 《Génome》2000,43(5):756-762
Fluorescence in situ hybridization (FISH) was applied with total genomic DNA extracted from Dasypyrum villosum (L.) Candargy as a probe to characterize chromosome translocations arising from tissue culture in hybrids of Triticum aestivum x (T. durum - D. villosum, amphiploid). Chromosome translocations between wheat and D. villosum occurred in callus cells at an average frequency of 1.9%. Translocations existed not only in callus cells but also in regenerants. Three plants with translocation chromosomes were characterized among 66 regenerants of T. aestivum 'Chinese Spring' x 'TH1W' and 'NPFP' x 'TH1'. One of them proved to be a reciprocal translocation with an exchange of about one third of a wheat chromosome arm with about one half of a chromosome arm of D. villosum. The breakpoints of the other two translocations were located at, or near centromeres. The results are similar for both callus cells and regenerants and provide further evidence that translocations take place in tissue culture. Other structural chromosomal changes, for example, fragments, telocentrics, dicentromeres, and deletions, as well as numerical alterations including aneuploidy and polyploidy were recorded both in callus cells and regenerants.  相似文献   

18.
Wheat (Triticum aestivum L.) deletion (del) stocks are valuable tools for the physical mapping of molecular markers and genes to chromosome bins delineated by 2 adjacent deletion breakpoints. The wheat deletion stocks were produced by using gametocidal genes derived from related Aegilops species. Here, we report on the origin, structure, and behavior of a highly rearranged chromosome 1BS-4. The cytogenetic and molecular marker analyses suggest that 1BS-4 resulted from 2 breakpoints in the 1BS arm and 1 breakpoint in the 1BL arm. The distal segment from 1BS, except for a small deleted part, is translocated to the long arm. Cytologically, chromosome 1BS-4 is highly stable, but shows a unique meiotic pairing behavior. The short arm of 1BS-4 fails to pair with a normal 1BS arm because of lack of homology at the distal ends. The long arm of 1BS-4 only pairs with a normal 1BS arm within the distal region translocated from 1BS. Therefore, using the 1BS-4 deletion stock for physical mapping will result in the false allocation of molecular markers and genes proximal to the breakpoint of 1BS-4.  相似文献   

19.
利用两个小麦-黑麦异源双代换系DS 5A/5R与DS 6A/6R杂交,探讨同祖染色体配对的可能性与创制小麦黑麦异源易位系.在方法上对杂种F1的减数分裂行为进行研究,观察5R与5A、6R与6A配对频率,探讨同祖染色体配对规律.实验结果看到杂交F1减数分裂中有22.91%的花粉母细胞有小麦染色体(ABD组)与黑麦染色体(R组)发生同祖配对.在F2及以后世代,通过染色体C分带、原位杂交检测,选择小麦-黑麦易位系.在F2代的45株中检测到9株有易位,易位频率为20%,是目前小麦-黑麦染色体易位频率最高的.染色体易位有的来源于同祖配对的交换,有的来源于单价体错分裂或断裂的重建.  相似文献   

20.
Chromosomal rearrangements in wheat: their types and distribution.   总被引:1,自引:0,他引:1  
Four hundred and sixty polyploid wheat accessions and 39 triticale forms from 37 countries of Europe, Asia, and USA were scored by C-banding for the presence of translocations. Chromosomal rearrangements were detected in 70 of 208 accessions of tetraploid wheat, 69 of 252 accessions of hexaploid wheat, and 3 of 39 triticale forms. Altogether, 58 types of major chromosomal rearrangements were identified in the studied material; they are discussed relative to 11 additional translocation types described by other authors. Six chromosome modifications of unknown origin were also observed. Among all chromosomal aberrations identified in wheat, single translocations were the most frequent type (39), followed by multiple rearrangements (9 types), pericentric inversions (9 types), and paracentric inversions (3 types). According to C-banding analyses, the breakpoints were located at or near the centromere in 60 rearranged chromosomes, while in 52 cases they were in interstitial chromosome regions. In the latter case, translocation breakpoints were often located at the border of C-bands and the euchromatin region or between two adjacent C-bands; some of these regions seem to be translocation "hotspots". Our results and data published by other authors indicate that the B-genome chromosomes are involved in translocations most frequently, followed by the A- and D-genome chromosomes; individual chromosomes also differ in the frequencies of translocations. Most translocations were detected in 1 or 2 accessions, and only 11 variants showed relatively high frequencies or were detected in wheat varieties of different origins or from different species. High frequencies of some translocations with a very restricted distribution could be due to a "bottleneck effect". Other types seem to occur independently and their broad distribution can result from selective advantages of rearranged genotypes in diverse environmental conditions. We found significant geographic variation in the spectra and frequencies of translocation in wheat: the highest proportions of rearranged genotypes were found in Central Asia, the Middle East, Northern Africa, and France. A low proportion of aberrant genotypes was characteristic of tetraploid wheat from Transcaucasia and hexaploid wheat from Middle Asia and Eastern Europe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号