首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Repetitive hypoxia followed by persistently increased ventilatory motor output is referred to as long-term facilitation (LTF). LTF is activated during sleep after repetitive hypoxia in snorers. We hypothesized that LTF is activated in obstructive sleep apnea (OSA) patients. Eleven subjects with OSA (apnea/hypopnea index = 43.6 +/- 18.7/h) were included. Every subject had a baseline polysomnographic study on the appropriate continuous positive airway pressure (CPAP). CPAP was retitrated to eliminate apnea/hypopnea but to maintain inspiratory flow limitation (sham night). Each subject was studied on 2 separate nights. These two studies are separated by 1 mo of optimal nasal CPAP treatment for a minimum of 4-6 h/night. The device was capable of covert pressure monitoring. During night 1 (N1), study subjects used nasal CPAP at suboptimal pressure to have significant air flow limitation (>60% breaths) without apneas/hypopneas. After stable sleep was reached, we induced brief isocapnic hypoxia [inspired O(2) fraction (FI(O(2))) = 8%] (3 min) followed by 5 min of room air. This sequence was repeated 10 times. Measurements were obtained during control, hypoxia, and at 5, 20, and 40 min of recovery for ventilation, timing (n = 11), and supraglottic pressure (n = 6). Upper airway resistance (Rua) was calculated at peak inspiratory flow. During the recovery period, there was no change in minute ventilation (99 +/- 8% of control), despite decreased Rua to 58 +/- 24% of control (P < 0.05). There was a reduction in the ratio of inspiratory time to total time for a breath (duty cycle) (0.5 to 0.45, P < 0.05) but no effect on inspiratory time. During night 2 (N2), the protocol of N1 was repeated. N2 revealed no changes compared with N1 during the recovery period. In conclusion, 1) reduced Rua in the recovery period indicates LTF of upper airway dilators; 2) lack of hyperpnea in the recovery period suggests that thoracic pump muscles do not demonstrate LTF; 3) we speculate that LTF may temporarily stabilize respiration in OSA patients after repeated apneas/hypopneas; and 4) nasal CPAP did not alter the ability of OSA patients to elicit LTF at the thoracic pump muscle.  相似文献   

2.
Patients with obstructive sleep apnea (OSA) are frequently obese and are predisposed to weight gain. They also have heightened sympathetic drive. We reasoned that noradrenergic activation of beta(3)-receptors on adipocytes would inhibit leptin production, predisposing to obesity in sleep apnea. We therefore tested the hypothesis that obesity and predisposition to weight gain in OSA are associated with low levels of plasma leptin. We prospectively studied 32 male patients (43 +/- 2 yr) with OSA who were newly diagnosed and never treated and who were free of any other diseases. Control measurements were obtained from 32 similarly obese closely matched male subjects (38 +/- 2 yr). Leptin levels were 13.7 +/- 1.3 and 9.2 +/- 1.2 ng/ml in patients with OSA and controls, respectively (P = 0.02). Weight gain over the year before diagnosis was 5.2 +/- 1.7 and 0.5 +/- 0.9 kg in sleep apnea patients and similarly obese control subjects, respectively (P = 0.04). Muscle sympathetic activity was 46 +/- 4 and 30 +/- 4 bursts/min in patients with OSA (n = 16) and control subjects (n = 18), respectively (P = 0.01). Plasma leptin levels are elevated in newly diagnosed otherwise healthy patients with untreated sleep apnea beyond the levels seen in similarly obese control subjects without sleep apnea. Higher leptin levels in OSA, independent of body fat content, suggest that OSA is associated with resistance to the weight-reducing effects of leptin.  相似文献   

3.
Possible mechanisms of periodic breathing during sleep   总被引:3,自引:0,他引:3  
To determine the effect of respiratory control system loop gain on periodic breathing during sleep, 10 volunteers were studied during stage 1-2 non-rapid-eye-movement (NREM) sleep while breathing room air (room air control), while hypoxic (hypoxia control), and while wearing a tight-fitting mask that augmented control system gain by mechanically increasing the effect of ventilation on arterial O2 saturation (SaO2) (hypoxia increased gain). Ventilatory responses to progressive hypoxia at two steady-state end-tidal PCO2 levels and to progressive hypercapnia at two levels of oxygenation were measured during wakefulness as indexes of controller gain. Under increased gain conditions, five male subjects developed periodic breathing with recurrent cycles of hyperventilation and apnea; the remaining subjects had nonperiodic patterns of hyperventilation. Periodic breathers had greater ventilatory response slopes to hypercapnia under either hyperoxic or hypoxic conditions than nonperiodic breathers (2.98 +/- 0.72 vs. 1.50 +/- 0.39 l.min-1.Torr-1; 4.39 +/- 2.05 vs. 1.72 +/- 0.86 l.min-1.Torr-1; for both, P less than 0.04) and greater ventilatory responsiveness to hypoxia at a PCO2 of 46.5 Torr (2.07 +/- 0.91 vs. 0.87 +/- 0.38 l.min-1.% fall in SaO2(-1); P less than 0.04). To assess whether spontaneous oscillations in ventilation contributed to periodic breathing, power spectrum analysis was used to detect significant cyclic patterns in ventilation during NREM sleep. Oscillations occurred more frequently in periodic breathers, and hypercapnic responses were higher in subjects with oscillations than those without. The results suggest that spontaneous oscillations in ventilation are common during sleep and can be converted to periodic breathing with apnea when loop gain is increased.  相似文献   

4.
To test whether active hyperventilation activates the "afterdischarge" mechanism during non-rapid-eye-movement (NREM) sleep, we investigated the effect of abrupt termination of active hypoxia-induced hyperventilation in normal subjects during NREM sleep. Hypoxia was induced for 15 s, 30 s, 1 min, and 5 min. The last two durations were studied under both isocapnic and hypocapnic conditions. Hypoxia was abruptly terminated with 100% inspiratory O2 fraction. Several room air-to-hyperoxia transitions were performed to establish a control period for hyperoxia after hypoxia transitions. Transient hyperoxia alone was associated with decreased expired ventilation (VE) to 90 +/- 7% of room air. Hyperoxic termination of 1 min of isocapnic hypoxia [end-tidal PO2 (PETO2) 63 +/- 3 Torr] was associated with VE persistently above the hyperoxic control for four to six breaths. In contrast, termination of 30 s or 1 min of hypocapnic hypoxia [PETO2 49 +/- 3 and 48 +/- 2 Torr, respectively; end-tidal PCO2 (PETCO2) decreased by 2.5 or 3.8 Torr, respectively] resulted in hypoventilation for 45 s and prolongation of expiratory duration (TE) for 18 s. Termination of 5 min of isocapnic hypoxia (PETO2 63 +/- 3 Torr) was associated with central apnea (longest TE 200% of room air); VE remained below the hyperoxic control for 49 s. Termination of 5 min of hypocapnic hypoxia (PETO2 64 +/- 4 Torr, PETCO2 decreased by 2.6 Torr) was also associated with central apnea (longest TE 500% of room air). VE remained below the hyperoxic control for 88 s. We conclude that 1) poststimulus hyperpnea occurs in NREM sleep as long as hypoxia is brief and arterial PCO2 is maintained, suggesting the activation of the afterdischarge mechanism; 2) transient hypocapnia overrides the potentiating effects of afterdischarge, resulting in hypoventilation; and 3) sustained hypoxia abolishes the potentiating effects of after-discharge, resulting in central apnea. These data suggest that the inhibitory effects of sustained hypoxia and hypocapnia may interact to cause periodic breathing.  相似文献   

5.
Obstructive sleep apnea (OSA) has been increasingly linked to cardiovascular disease, endothelial dysfunction, and oxidative stress, generated by repetitive nocturnal hypoxemia and reperfusion. Circulating free nitrotyrosine has been reported as a novel biomarker of nitric oxide (NO)-induced oxidative/nitrosative stress. Nitrosative stress has been implicated as a possible mechanism for development of cardiovascular diseases. We tested the hypothesis that repetitive severe hypoxemia resulting from OSA would increase NO-mediated oxidative stress. We studied 10 men with newly diagnosed moderate to severe OSA who were free of other diseases, had never been treated for OSA, and were taking no medications. Nitrotyrosine measurements, performed by liquid chromatography-tandem mass spectrometry, were made before and after untreated apneic sleep. We compared free nitrotyrosine levels in these patients with those obtained at similar times in 10 healthy male control subjects without OSA, with similar age and body mass index. Evening baseline nitrotyrosine levels were similar before sleep in the control and OSA groups [0.16 +/- 0.01 and 0.15 +/- 0.01 ng/ml, respectively, P = not significant (NS)]. Neither normal nor disturbed apneic sleep led to significant changes of plasma nitrotyrosine (morning levels: control group 0.14 +/- 0.01 ng/ml; OSA group 0.15 +/- 0.01 ng/ml, P = NS). OSA was not accompanied by increased circulating free nitrotyrosine either at baseline or after sleep. This observation suggests that repetitive hypoxemia during OSA does not result in increased NO-mediated oxidative/nitrosative stress in otherwise healthy subjects with OSA.  相似文献   

6.
Symptoms and signs in 12 patients with severe obstructive sleep apnea (OSA) syndrome have been presented. The most common symptoms were snoring , increased motor activity during sleep and excessive daytime somnolence. The factors predisposing to OSA syndrome were obesity and anatomic abnormalities of the upper airway structure. In some cases the signs of OSA syndrome included hypertension, right heart failure, chronic alveolar hypoventilation and polycythemia. Polysomnography showed sleep fragmentation and the prevalence of light sleep stages. Obstructive sleep apneas repeated 73 +/- 23 times per hour of sleep. The mean apnea duration was 19 +/- 8 s. The mean arterial oxygen saturation during apnea was 72 +/- 14%.  相似文献   

7.
Obstructive sleep apnea (OSA) increases the risk of stroke independent of known vascular and metabolic risk factors. Although patients with OSA have higher prevalence of hypertension and evidence of hypercoagulability, the mechanism of this increased risk is unknown. Obstructive apnea events are associated with surges in blood pressure, hypercapnia, and fluctuations in cerebral blood flow. These perturbations can adversely affect the cerebral circulation. We hypothesized that patients with OSA have impaired cerebral autoregulation, which may contribute to the increased risk of cerebral ischemia and stroke. We examined cerebral autoregulation in patients with and without OSA by measuring cerebral artery blood flow velocity (CBFV) by using transcranial Doppler ultrasound and arterial blood pressure using finger pulse photoplethysmography during orthostatic hypotension and recovery as well as during 5% CO(2) inhalation. Cerebral vascular conductance and reactivity were determined. Forty-eight subjects, 26 controls (age 41.0+/-2.3 yr) and 22 OSA (age 46.8+/-2.3 yr) free of cerebrovascular and active coronary artery disease participated in this study. OSA patients had a mean apnea-hypopnea index of 78.4+/-7.1 vs. 1.8+/-0.3 events/h in controls. The oxygen saturation during sleep was significantly lower in the OSA group (78+/-2%) vs. 91+/-1% in controls. The dynamic vascular analysis showed mean CBFV was significantly lower in OSA patients compared with controls (48+/-3 vs. 55+/-2 cm/s; P <0.05, respectively). The OSA group had a lower rate of recovery of cerebrovascular conductance for a given drop in blood pressure compared with controls (0.06+/-0.02 vs. 0.20+/-0.06 cm.s(-2).mmHg(-1); P <0.05). There was no difference in cerebrovascular vasodilatation in response to CO(2). The findings showed that patients with OSA have decreased CBFV at baseline and delayed cerebrovascular compensatory response to changes in blood pressure but not to CO(2). These perturbations may increase the risk of cerebral ischemia during obstructive apnea.  相似文献   

8.
Long-term facilitation (LTF) is a prolonged increase in ventilatory motor output after episodic peripheral chemoreceptor stimulation. We have previously shown that LTF is activated during sleep following repetitive hypoxia in snorers (Babcock MA and Badr MS. Sleep 21: 709-716, 1998). The purpose of this study was 1) to ascertain the relative contribution of inspiratory flow limitation to the development of LTF and 2) to determine the effect of eliminating inspiratory flow limitation by nasal CPAP on LTF. We studied 25 normal subjects during stable non-rapid eye movement sleep. We induced 10 episodes of brief repetitive isocapnic hypoxia (inspired O(2) fraction = 8%; 3 min) followed by 5 min of room air. Measurements were obtained during control and at 20 min of recovery (R(20)). During the episodic hypoxia study, inspiratory minute ventilation (Vi) increased from 6.7 +/- 1.9 l/min during the control period to 8.2 +/- 2.7 l/min at R(20) (122% of control; P < 0.05). Linear regression analysis confirmed that inspiratory flow limitation during control was the only independent determinant of the presence of LTF (P = 0.005). Six subjects were restudied by using nasal continuous positive airway pressure to ascertain the effect of eliminating inspiratory flow limitation on LTF. Vi during the recovery period was 97 +/- 10% (P > 0.05). In conclusion, 1) repetitive hypoxia in sleeping humans is followed by increased Vi in the recovery period, indicative of development of LTF; 2) inspiratory flow limitation is the only independent determinant of posthypoxic LTF in sleeping human; 3) elimination of inspiratory flow limitation abolished the ventilatory manifestations of LTF; and 4) we propose that increased Vi in the recovery period was a result of preferential recruitment of upper airway dilators by repetitive hypoxia.  相似文献   

9.
The response to chemical stimuli (chemical responsiveness) and the increases in respiratory drive required for arousal (arousal threshold) and for opening the airway without arousal (effective recruitment threshold) are important determinants of ventilatory instability and, hence, severity of obstructive apnea. We measured these variables in 21 obstructive apnea patients (apnea-hypopnea index 91 +/- 24 h(-1)) while on continuous-positive-airway pressure. During sleep, pressure was intermittently reduced (dial down) to induce severe hypopneas. Dial downs were done on room air and following approximately 30 s of breathing hypercapneic and/or hypoxic mixtures, which induced a range of ventilatory stimulation before dial down. Ventilation just before dial down and flow during dial down were measured. Chemical responsiveness, estimated as the percent increase in ventilation during the 5(th) breath following administration of 6% CO(2) combined with approximately 4% desaturation, was large (187 +/- 117%). Arousal threshold, estimated as the percent increase in ventilation associated with a 50% probability of arousal, ranged from 40% to >268% and was <120% in 12/21 patients, indicating that in many patients arousal occurs with modest changes in chemical drive. Effective recruitment threshold, estimated as percent increase in pre-dial-down ventilation associated with a significant increase in dial-down flow, ranged from zero to >174% and was <110% in 12/21 patients, indicating that in many patients reflex dilatation occurs with modest increases in drive. The two thresholds were not correlated. In most OSA patients, airway patency may be maintained with only modest increases in chemical drive, but instability results because of a low arousal threshold and a brisk increase in drive following brief reduction in alveolar ventilation.  相似文献   

10.
We hypothesized that a decreased susceptibility to the development of hypocapnic central apnea during non-rapid eye movement (NREM) sleep in women compared with men could be an explanation for the gender difference in the sleep apnea/hypopnea syndrome. We studied eight men (age 25-35 yr) and eight women in the midluteal phase of the menstrual cycle (age 21-43 yr); we repeated studies in six women during the midfollicular phase. Hypocapnia was induced via nasal mechanical ventilation for 3 min, with respiratory frequency matched to eupneic frequency. Tidal volume (VT) was increased between 110 and 200% of eupneic control. Cessation of mechanical ventilation resulted in hypocapnic central apnea or hypopnea, depending on the magnitude of hypocapnia. Nadir minute ventilation in the recovery period was plotted against the change in end-tidal PCO(2) (PET(CO(2))) per trial; minute ventilation was given a value of 0 during central apnea. The apneic threshold was defined as the x-intercept of the linear regression line. In women, induction of a central apnea required an increase in VT to 155 +/- 29% (mean +/- SD) and a reduction of PET(CO(2)) by -4.72 +/- 0.57 Torr. In men, induction of a central apnea required an increase in VT to 142 +/- 13% and a reduction of PET(CO(2)) by -3.54 +/- 0.31 Torr (P = 0.002). There was no difference in the apneic threshold between the follicular and the luteal phase in women. Premenopausal women are less susceptible to hypocapnic disfacilitation during NREM sleep than men. This effect was not explained by progesterone. Preservation of ventilatory motor output during hypocapnia may explain the gender difference in sleep apnea.  相似文献   

11.
In patients with obstructive sleep apnea (OSA), substantial elevations of systemic blood pressure (BP) and depressions of oxyhemoglobin saturation (SaO2) accompany apnea termination. The causes of the BP elevations, which contribute significantly to nocturnal hypertension in OSA, have not been defined precisely. To assess the relative contribution of arterial hypoxemia, we observed mean arterial pressure (MAP) changes following obstructive apneas in 11 OSA patients during non-rapid-eye-movement (NREM) sleep and then under three experimental conditions: 1) apnea with O2 supplementation; 2) hypoxemia (SaO2 80%) without apnea; and 3) arousal from sleep with neither hypoxemia nor apnea. We found that apneas recorded during O2 supplementation (SaO2 nadir 93.6% +/- 2.4; mean +/- SD) in six subjects were associated with equivalent postapneic MAP elevations compared with unsupplemented apneas (SaO2 nadir 79-82%): 18.8 +/- 7.1 vs. 21.3 +/- 9.2 mmHg (mean change MAP +/- SD); in the absence of respiratory and sleep disruption in eight subjects, hypoxemia was not associated with the BP elevations observed following apneas: -5.4 +/- 19 vs. 19.1 +/- 7.8 mmHg (P less than 0.01); and in five subjects, auditory arousal alone was associated with MAP elevation similar to that observed following apneas: 24.0 +/- 8.1 vs. 22.0 +/- 6.9 mmHg. We conclude that in NREM sleep postapneic BP elevations are not primarily attributable to arterial hypoxemia. Other factors associated with apnea termination, including arousal from sleep, reinflation of the lungs, and changes of intrathoracic pressure, may be responsible for these elevations.  相似文献   

12.
The objective of this study was to determine whether impaired upper airway (UA) mucosal sensation contributes to altered swallowing function in obstructive sleep apnea (OSA). We determined UA two-point discrimination threshold (2PDT) and vibratory sensation threshold (VST) in 15 men with untreated OSA and 9 nonapneic controls (CL). We then assessed swallowing responses to oropharyngeal fluid boluses delivered via a catheter. The threshold volume required to provoke swallowing and the mean latency to swallowing were determined, as was the phase of the respiratory cycle in which swallowing occurred [expressed as percentage of control cycle duration (%CCD)] and the extent of prolongation of the respiratory cycle after swallowing [inspiratory suppression time (IST)]. 2PDT and VST were significantly impaired in OSA patients compared with CL subjects. 2PDT was positively correlated with swallowing latency and threshold volume in CL subjects, but not in OSA patients. Threshold volume did not differ between the groups [median value = 0.1 ml (95% confidence interval = 0.1-0.2) for OSA and 0.15 ml (95% confidence interval = 0.1-0.16) for CL], whereas swallowing latency was shorter for OSA patients [3.3 (SD 0.7) vs. 3.9 (SD 0.8) s, P = 0.04]. %CCD and IST were similar for OSA patients and CL subjects. However, among OSA patients there was a significant inverse relation between VST and IST. These findings suggest that oropharyngeal sensory impairment in OSA is associated with an attenuation of inhibitory modulating inputs to reflex and central control of UA swallowing function.  相似文献   

13.
Recurrent sleep-related hypoxia occurs in common disorders such as obstructive sleep apnea (OSA). The marked changes in sleep after treatment suggest that stimuli associated with OSA (e.g., intermittent hypoxia) may significantly modulate sleep regulation. However, no studies have investigated the independent effects of intermittent sleep-related hypoxia on sleep regulation and recovery sleep after removal of intermittent hypoxia. Ten rats were implanted with telemetry units to record the electroencephalogram (EEG), neck electromyogram, and body temperature. After >7 days recovery, a computer algorithm detected sleep-wake states and triggered hypoxic stimuli (10% O2) or room air stimuli only during sleep for a 3-h period. Sleep-wake states were also recorded for a 3-h recovery period after the stimuli. Each rat received an average of 69.0 +/- 6.9 hypoxic stimuli during sleep. The non-rapid eye movement (non-REM) and rapid-eye-movement (REM) sleep episodes averaged 50.1 +/- 3.2 and 58.9 +/- 6.6 s, respectively, with the hypoxic stimuli, with 32.3 +/- 3.2 and 58.6 +/- 4.8 s of these periods being spent in hypoxia. Compared with results for room air controls, hypoxic stimuli led to increased wakefulness (P < 0.005), nonsignificant changes in non-REM sleep, and reduced REM sleep (P < 0.001). With hypoxic stimuli, wakefulness episodes were longer and more frequent, non-REM periods were shorter and more frequent, and REM episodes were shorter and less frequent (P < 0.015). Hypoxic stimuli also increased faster frequencies in the EEG (P < 0.005). These effects of hypoxic stimuli were reversed on return to room air. There was a rebound increase in REM sleep, increased slower non-REM EEG frequencies, and decreased wakefulness (P < 0.001). The results show that sleep-specific hypoxia leads to significant modulation of sleep-wake regulation both during and after application of the intermittent hypoxic stimuli. This study is the first to determine the independent effects of sleep-related hypoxia on sleep regulation that approximates OSA before and after treatment.  相似文献   

14.
During obstructive sleep apnea (OSA), systemic (Psa) and pulmonary (Ppa) arterial pressures acutely increase after apnea termination, whereas left and right ventricular stroke volumes (SV) reach a nadir. In a canine model (n = 6), we examined the effects of arousal, parasympathetic blockade (atropine 1 mg/kg iv), and sleep state on cardiovascular responses to OSA. In the absence of arousal, SV remained constant after apnea termination, compared with a 4.4 +/- 1.7% decrease after apnea with arousal (P < 0.025). The rise in transmural Ppa was independent of arousal (4.5 +/- 1.0 vs. 4.1 +/- 1.2 mmHg with and without arousal, respectively), whereas Psa increased more after apnea termination in apneas with arousal compared with apneas without arousal. Parasympathetic blockade abolished the arousal-induced increase in Psa, indicating that arousal is associated with a vagal withdrawal of the parasympathetic tone to the heart. Rapid-eye-movement (REM) sleep blunted the increase in Psa (pre- to end-apnea: 5.6 +/- 2.3 mmHg vs. 10.3 +/- 1.6 mmHg, REM vs. non-REM, respectively, P < 0.025), but not transmural Ppa, during an obstructive apnea. We conclude that arousal and sleep state both have differential effects on the systemic and pulmonary circulation in OSA, indicating that, in patients with underlying cardiovascular disease, the hemodynamic consequences of OSA may be different for the right or the left side of the circulation.  相似文献   

15.
Effect of testosterone on the apneic threshold in women during NREM sleep.   总被引:5,自引:0,他引:5  
The hypocapnic apneic threshold (AT) is lower in women relative to men. To test the hypothesis that the gender difference in AT was due to testosterone, we determined the AT during non-rapid eye movement sleep in eight healthy, nonsnoring, premenopausal women before and after 10-12 days of transdermal testosterone. Hypocapnia was induced via nasal mechanical ventilation (MV) for 3 min with tidal volumes ranging from 175 to 215% above eupneic tidal volume and respiratory frequency matched to eupneic frequency. Cessation of MV resulted in hypocapnic central apnea or hypopnea depending on the magnitude of hypocapnia. Nadir minute ventilation as a percentage of control (%Ve) was plotted against the change in end-tidal CO(2) (Pet(CO(2))); %Ve was given a value of zero during central apnea. The AT was defined as the Pet(CO(2)) at which the apnea closest to the last hypopnea occurred; hypocapnic ventilatory response (HPVR) was defined as the slope of the linear regression Ve vs. Pet(CO(2)). Both the AT (39.5 +/- 2.9 vs. 42.1 +/- 3.0 Torr; P = 0.002) and HPVR (0.20 +/- 0.05 vs. 0.33 +/- 0.11%Ve/Torr; P = 0.016) increased with testosterone administration. We conclude that testosterone administration increases AT in premenopausal women, suggesting that the increased breathing instability during sleep in men is related to the presence of testosterone.  相似文献   

16.
Patients with obstructive sleep apnea (OSA) have been reported to have an augmented pressor response to hypoxic rebreathing. To assess the contribution of the peripheral vasculature to this hemodynamic response, we measured heart rate, mean arterial pressure (MAP), and forearm blood flow by venous occlusion plethysmography in 13 patients with OSA and in 6 nonapneic control subjects at arterial oxygen saturations (Sa(O(2))) of 90, 85, and 80% during progressive isocapnic hypoxia. Measurements were also performed during recovery from 5 min of forearm ischemia induced with cuff occlusion. MAP increased similarly in both groups during hypoxia (mean increase at 80% Sa(O(2)): OSA patients, 9 +/- 11 mmHg; controls, 12 +/- 7 mmHg). Forearm vascular resistance, calculated from forearm blood flow and MAP, decreased in controls (mean change -37 +/- 19% at Sa(O(2)) 80%) but not in patients (mean change -4 +/- 16% at 80% Sa(O(2))). Both groups decreased forearm vascular resistance similarly after forearm ischemia (maximum change from baseline -85%). We conclude that OSA patients have an abnormal peripheral vascular response to isocapnic hypoxia.  相似文献   

17.
Inspiratory load compensation is impaired in patients with obstructive sleep apnea (OSA), a condition characterized by hypoxia during sleep. We sought to compare the effects of sustained hypoxia on ventilation during inspiratory resistive loading in OSA patients and matched controls. Ten OSA patients and 10 controls received 30 min of isocapnic hypoxia (arterial oxygen saturation 80%) and normoxia in random order. Following the gas period, subjects were administered six incremental 2-min inspiratory resistive loads while breathing room air. Ventilation was measured throughout the loading period. In both patients and controls, there was a significant increase in inspiratory time with increasing load (P = 0.006 and 0.003, respectively), accompanied by a significant fall in peak inspiratory flow (P = 0.006 and P < 0.001, respectively). The result was a significant fall in minute ventilation in both groups with increasing load (P = 0.003 and P < 0.001, respectively). There was no difference between the two groups for these parameters. The only difference between the two groups was a transient increase in tidal volume in controls (P = 0.02) but not in OSA patients (P = 0.57) during loading. Following hypoxia, there was a significant increase in minute ventilation during loading in both groups (P < 0.001). These results suggest that ventilation during incremental resistive loading is preserved in OSA patients and that it appears relatively impervious to the effects of hypoxia.  相似文献   

18.
To assess effects of anesthesia and opioids, we studied 13 children with obstructive sleep apnea (OSA, age 4.0 +/- 2.2 yr, mean +/- SD) and 24 age-matched control subjects (5.8 +/- 4.0 yr). Apnea indexes of children with OSA were 29.4 +/- 18 h-1, median 30 h-1. Under inhalational anesthetic, closing pressure at the mask was 2.2 +/- 6.9 vs. -14.7 +/- 7.8 cmH2O, OSA vs. control (P < 0.001). After intubation, spontaneous ventilation was 115.5 +/- 56.9 vs. 158.7 +/- 81.6 ml x kg-1 small middle dot min-1, OSA vs. control (P = 0.02), despite elevated PCO2 (49.3 vs. 42.1 Torr, OSA vs. control, P < 0.001). Minute ventilation fell after fentanyl (0.5 microg/kg iv), with central apnea in 6 of 13 OSA cases vs. 1 of 23 control subjects (P < 0.001). Consistent with the finding of reduced spontaneous ventilation, apnea was most likely when end-tidal CO2 exceeded 50 Torr during spontaneous breathing under anesthetic. Thus children with OSA had depressed spontaneous ventilation under anesthesia, and opioids precipitated apnea in almost 50% of children with OSA who were intubated but breathing spontaneously under inhalational anesthesia.  相似文献   

19.
We investigated the effect of age on breathing and total pulmonary resistance (RL) during sleep by studying elderly (>65 yr) and young (25-38 yr) people without sleep apnea (EN and YN, respectively) matched for body mass index (BMI). To determine the impact of sleep apnea on age-related changes in breathing, we studied elderly and young apneic patients (EA and YA, respectively) matched for apnea and BMI. In all groups (n = 11), breathing during periods of stable sleep was analyzed to evaluate the intrinsic variability of respiratory control mechanisms. In the absence of sleep apnea, the variability of the breathing was similar in the elderly and young [mean (+/- SD) coefficient of variation (CV) of tidal volume (VT); wake: EN 21.0 +/- 14.9%, YN 14.7 +/- 5.5%; sleep: EN 14.0 +/- 6.0%; YN 11.5 +/- 6.4%]. In patients with sleep apnea, breathing during stable sleep was more irregular, but there were no age-related differences (CV of VT; wake: EA 22.0 +/- 11.6%, YA 16.7 +/- 11.3%; sleep: EA 32.8 +/- 24.9%, YA 25.2 +/- 16.3%). In addition, EN tended to have a higher RL (n = 6, RL midinspiration, wake: EN 7.1 +/- 3.0; YN 9.1 +/- 6.4 cmH(2)O. l(-1). s, sleep: EN 17.5 +/- 11.7; YN 9.8 +/- 2.0 cmH(2)O. l(-1). s). We conclude that aging per se does not contribute to the intrinsic variability of respiratory control mechanisms, although there may be a lower probability of finding elderly people without respiratory instability.  相似文献   

20.
There is not a clinically available technique for measuring the physiological traits causing obstructive sleep apnea (OSA). Therefore, it is often difficult to determine why an individual has OSA or to what extent the various traits contribute to the development of OSA. In this study, we present a noninvasive method for measuring four important physiological traits causing OSA: 1) pharyngeal anatomy/collapsibility, 2) ventilatory control system gain (loop gain), 3) the ability of the upper airway to dilate/stiffen in response to an increase in ventilatory drive, and 4) arousal threshold. These variables are measured using a single maneuver in which continuous positive airway pressure (CPAP) is dropped from an optimum to various suboptimum pressures for 3- to 5-min intervals during sleep. Each individual's set of traits is entered into a physiological model of OSA that graphically illustrates the relative importance of each trait in that individual. Results from 14 subjects (10 with OSA) are described. Repeatability measurements from separate nights are also presented for four subjects. The measurements and model illustrate the multifactorial nature of OSA pathogenesis and how, in some individuals, small adjustments of one or another trait (which might be achievable with non-CPAP agents) could potentially treat OSA. This technique could conceivably be used clinically to define a patient's physiology and guide therapy based on the traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号