首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The role of calcium influx in dexamethasone-induced fragmentation of DNA was studied in the glucocorticoid-sensitive human lymphoid line of T cell derivation (CEM-C7). Reduction of calcium content in the medium or the use of EGTA increased DNA fragmentation and appeared to slightly enhance the effect of dexamethasone. Incubation of isolated nuclei in the presence of high concentrations of calcium did not bring about significant DNA fragmentation. Calmidazolium, an antagonist of calmodulin dependent reactions did not reduce the sensitivity of CEM-C7 cells to dexamethasone nor did it modify the response to dexamethasone of the resistant CEM-C1 line. It appears that in contrast to rodent thymocytes, massive calcium influx is not per se responsible for the initiation of directed cell killing (apoptosis).  相似文献   

3.
Inhibitors of histone deacetylases (HDACi's) are promising novel tools for cancer therapy. We have compared the growth inhibitory and apoptogenic potential of the pan-HDACi SAHA and the sub-class I selective HDAC inhibitor MS275, as well as valproic acid (VPA) on glucocorticoid sensitive and resistant B (B-ALL) and T (T-ALL) cell acute lymphoblastic leukemia cells and patients blasts. In contrast, to our previous results with U937 acute myeloid leukemia (AML) cells which showed a similar activity of MS275 and SAHA in growth inhibition and apoptosis induction, both B and T-ALL cells were much more efficiently killed by SAHA and VPA than by MS275. The same relative potency was observed with some patient ALL blasts treated ex vivo. SAHA displayed similar efficacy on glucocorticoid-sensitive and insensitive ALL cells but did not synergize with dexamethasone. In studying mediators of apoptosis we found that the TRAIL receptor DR5 is constitutively expressed in glucocorticoid-sensitive CEM-C7 cells which are also TRAIL sensitive. In contrast, glucocorticoid-insensitive CEM-C1 cells do not express DR5 and are insensitive to TRAIL. However, SAHA induces, in addition to p21(WAF1/CIP1) also re-expression of DR5. Importantly, SAHA-induced apoptosis of CEM-C7 cells operates through initiator caspase 10, while it induces apoptosis of CEM-C1 cells through the intrinsic, as well as through caspase-independent death pathways. Our data suggest that the generation of resistance to glucocorticoids has dramatically altered death signaling in these cells and that SAHA overcomes these restrictions by inducing alternative death pathways.  相似文献   

4.
We have studied the growth effects of conditioned media, interleukin-2 and PGE prostaglandin analogs on the glucocorticoid-sensitive human leukemic T-cell clone, CEM-C7. After 4 days, the glucocorticoid dexamethasone at approximately 10 nM kills 50% of CEM-C7 cells. To test the hypothesis that glucocorticoid-mediated lymphocytolysis was due to suppression of lymphokine expression only, we attempted to protect CEM-C7 cells from lysis by provision of lymphokine(s). Conditioned media from interleukin-2 secreting Jurkat T-cells as well as the glucocorticoid-insensitive, but receptor positive clone, CEM-C1, failed to prevent lymphocytolysis; exogenous interleukin-2 also did not provide protection. There were complex, biphasic interactions between dexamethasone and the synthetic PGEs, enisoprost and enisoprost free acid. Low doses of enisoprost alone (0.01 to 1 microgram/ml) stimulated growth, and in combinations completely reversed the growth inhibitory effects of 10 nM dexamethasone. Higher concentrations of enisoprost were inherently lethal and were additive to the steroid effect. Thus the glucocorticoid-induced lymphocytolysis in this human leukemic T-cell line may be modified biphasically by PGE prostaglandins, depending on their concentration. However, interleukin-2 or components in the conditioned media assayed had no effect in ameliorating the lethal response to glucocorticoid.  相似文献   

5.
The induction of apoptosis in leukemic cells by dexamethasone is well known, but the mechanism of this type of cell death and of dexamethasone resistance by some variants is still poorly understood. Apoptotic cell death is preceded by many changes in cellular properties, such as glucose metabolism, cell size, cell density, and others. In this study, 19F-NMR has been used to characterize changes in cell membrane potential and intracellular accessible volume during dexamethasone induced apoptosis. One dex-sensitive (CEM-C7) and three dex-resistant variants (CEM-C1, CEM-ICR27, and CEM-4R4) were examined. We have observed separate intracellular and extracellular resonances for trifluoroacetate and trifluoroacetamide added to suspended leukemic cells. From the equilibrium distribution of these fluoro-compounds between intra and extracellular spaces, the changes in membrane potential and intracellular accessible volume were calculated. The membrane potential for CEM-C7 cells was found to significantly decrease in the presence of dexamethasone (9-mV decrease within 18 h of dexamethasone treatment), while that of CEM-ICR27 was found in some samples to increase on dexamethasone incubation. The membrane potential for CEM-C1 decreased slightly, while that of CEM-4R4 was not appreciably affected by dexamethasone. The reduction of membrane potential seems to be an early step in the mechanism of dexamethasone induced apoptosis. Although the intracellular volume varied with cell type and dexamethasone incubation (for CEM-C7), the fractional intracellular volume (α = Vin/Vcell was found to be the same (0.82 ± 0.06) for all the cell lines in the presence and absence of dexamethasone. © 1993 Wiley-Liss, Inc.  相似文献   

6.
Cortivazol is a phenylpyrazolo glucocorticoid of high potency and unusual structure. In both wild-type and highly dexamethasone(dex)-resistant clones of the human leukemic cell line CEM, exposure to cortivazol leads to cell death. It has been shown recently that in wild-type CEM cells but not in a dex-resistant, glucocorticoid receptor(GR)-defective clone ICR-27 TK-3, dex induces GR mRNA. To test the hypothesis that cortivazol acts in dex-resistant cells by making use of the residual GR found there, wild-type and dex-resistant clones were treated with various concentrations of cortivazol and induction of GR mRNA was studied. Cortivazol significantly induced GR mRNA in the normal CEM-C7 as well as in two classes of dex-resistant clones, although the dex-resistant clones needed at least 10 times more cortivazol than the normal cells for significant GR mRNA induction. Increased levels of GR mRNA were noticed as early as 3 h after treatment. A general correlation between induction of GR mRNA and lysis of the normal and dex-resistant cells was found. Positive induction of GR mRNA might be one of the earliest crucial steps in the lysis of normal and dex-resistant CEM cells, or might serve as a marker for the process. However, the lysis pathway in the dex-resistant cells is defective in that dex-resistant clones needed significantly more cortivazol than the normal cells for lysis of the cells.  相似文献   

7.
The molecular basis for the loss of steroid binding activity in receptorless (r-) glucocorticoid-resistant (dexr) mutants isolated from the glucocorticoid-sensitive (dexs) cell line CEM-C7 was investigated. Although there was little binding of the reversibly associating ligand [3H]dexamethasone in r- mutants, labeling with the covalent affinity ligand [3H] dexamethasone 21-mesylate revealed significant amounts of a 92 kilodalton human glucocorticoid receptor (hGR) protein. Immunoblots of hGR protein in r- and normal cells showed that r- mutants expressed approximately half the amount of immunoreactive hGR protein seen in dexs cells. Comparison of the genomic organization of the hGR genes in normal and mutant cells revealed no discernable differences in the structure, or dosage, indicating that the r- phenotype was not the result of gross deletion or rearrangement of the hGR genes. In addition, r- cells expressed the same 7 kilobase mRNA as normal cells. More importantly, the amount of hGR mRNA expressed in r- cells was never significantly less, and in some cases was greater than, that seen in normal cells, indicating that the decrease in immunoreactive hGR protein seen in r- cells is not the result of loss of hGR mRNA expression. Taken together with the known mutation rate of the hGR gene(s) in these cells, these results suggest that the hGR genes in dexs CEM-C7 cells are allelic and that dexs cells express both a normal hGR protein and one with an altered steroid binding site. Furthermore, they suggest that the r- phenotype is acquired as the result of mutation within the coding region of the originally functional allele, leading to loss of ligand binding and expression of immunoreactive product.  相似文献   

8.
9.
Glucocorticoids induce growth inhibition and eventually cause cell lysis in certain sensitive leukemic cells. To investigate how glucocorticoids interact with cell growth pathways, we studied the expression of 14 growth-related genes in dexamethasone-treated CEM-C7A cells, a steroid-sensitive clone of the CCRF-CEM cell line, and in several closely related clones. The 14 genes studied were chosen to represent four different levels of mitogenic signal transduction. Detectable mRNA levels were found for 8 of the 14 genes, but among these only c-myc expression was obviously suppressed by dexamethasone. The c-myc mRNA levels declined abruptly during the first 12 h after addition of 1 microM dexamethasone, and maximal suppression occurred by 18 h. This change was not seen in the C7A controls, in the glucocorticoid-resistant, receptor-deficient clone ICR-27, or in the glucocorticoid-resistant, receptor-positive clone C1. H.10, a hybrid clone between C1 and ICR-27, showed restoration of the sensitive phenotype, and in H.10 cells the c-myc mRNA was also suppressed by dexamethasone. Our results suggest that: 1) functional glucocorticoid receptor is required for inducing c-myc suppression. 2) In dexamethasone-resistant cells with functional receptors c-myc is not suppressed. 3) The growth arrest induced by glucocorticoids correlates with, and may be regulated via, suppression of c-myc expression.  相似文献   

10.
Following treatment of the human T-cell leukaemia line, CEM-C7, with the glucocorticoid, dexamethasone, a rapid decrease in viability occurred after 40 h which coincided with fragmentation of DNA in these cells. A similar pattern of DNA fragmentation was observed when these cells were gamma-irradiated or treated with cycloheximide. Distinct morphological changes occurred after treatment, indicating a form of cell death, regulated from within, termed apoptosis. A set of nuclear proteins ranging in size from 10-18 kDa appeared by 40 h following treatment with dexamethasone. Treatment of cells with gamma-irradiation or cycloheximide also produced the same protein pattern. This set of proteins, and a doublet approximately 55 kDa in size, had apparent nuclease activity which was not observed in untreated cells. However, protein microsequencing of these bands in the 10-18 kDa region revealed that they were histone proteins. These results cast doubt on a recent report which provided evidence that these proteins were induced nucleases.  相似文献   

11.
12.
The mechanisms by which cAMP mediates apoptosis are not well understood. In the current studies, we used wild-type (WT) S49 T-lymphoma cells and the kin(-) variant (which lacks protein kinase A (PKA)) to examine cAMP/PKA-mediated apoptosis. The cAMP analog, 8-CPT-cAMP, increased phosphorylation of the cAMP response element-binding protein (CREB), activated caspase-3, and induced apoptosis in WT but not in kin(-) S49 cells. Using an array of 96 apoptosis-related genes, we found that treatment of WT cells with 8-CPT-cAMP for 24 h induced expression of mRNA for the pro-apoptotic gene, Bim. Real-time PCR analysis indicated that 8-CPT-cAMP increased Bim RNA in WT cells in <2 h and maintained this increase for >24 h. Bim protein expression increased in WT but not kin(-) cells treated with 8-CPT-cAMP or with the beta-adrenergic receptor agonist isoproterenol. Both apoptosis and Bim expression were reversible with removal of 8-CPT-cAMP after <6 h. The glucocorticoid dexamethasone also promoted apoptosis and Bim expression in S49 cells. In contrast, both UV light and anti-mouse Fas monoclonal antibody promoted apoptosis in S49 cells but did not induce Bim expression. 8-CPT-cAMP also induced Bim expression and enhanced dexamethasone-promoted apoptosis in human T-cell leukemia CEM-C7-14 (glucocorticoid-sensitive) and CEM-C1-15 (glucocorticoid-resistant) cells; increased Bim expression in 8-CPT-cAMP-treated CEM-C1-15 cells correlated with conversion of the cells from resistance to sensitivity to glucocorticoid-promoted apoptosis. Induction of Bim appears to be a key event in cAMP-promoted apoptosis in both murine and human T-cell lymphoma and leukemia cells and thus appears to be a convergence point for the killing of such cells by glucocorticoids and agents that elevate cAMP.  相似文献   

13.
14.
Two glucocorticoid receptor-containing clones of human acute lymphoblastic leukemia, one (CEM-C7) sensitive and one (CEM-C1) resistant to dexamethasone (dex) were studied in an effort to identify the time course of the biochemical changes responsible for dex-induced growth inhibition of CEM-C7 cells. Cells were synchronized by treatment with 0.25 mM (C7) or 0.50 mM (C1) thymidine for 12 h followed by 0.025 micrograms/ml (C7) or 0.050 micrograms/ml (C1) colcemid for 12 h, then released either in the presence or absence of 1 microM dex. The inhibition of cellular proliferation which occurs at 48 h after release in the dex-treated CEM-C7 cells was preceded by an inhibition of acetate incorporation into cholesterol, first evident at 24 h, inhibition of protein synthesis at 30 h, and the development of a cell cycle block in G1 at 36 h. No inhibition of any of these parameters was seen in the resistant CEM-C1 cells. Thus the inhibition of cholesterol synthesis in the sensitive cells may be one of the earliest parameters affected by glucocorticoids.  相似文献   

15.
Fifty-four independent dexamethasone-resistant clones were isolated from the clonal, glucocorticoid-sensitive human leukemic T-cell line CEM-C7. Resistance to 1 microM dexamethasone was acquired spontaneously at a rate of 2.6 X 10(-5) per cell per generation as determined by fluctuation analysis. After mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), the phenotypic expression time for dexamethasone resistance was determined to be 3 days. Spontaneous acquisition of resistance to 0.1 mM 6-thioguanine appeared to occur at a much slower rate, 1.6 X 10(-6) per cell per generation. However, the expression time after MNNG mutagenesis for this resistant phenotype was greater than 11 days, suggesting that the different rates of acquisition for the two phenotypes measured by fluctuation analysis were the results of the disparate expression times. The mutagens ICR 191 and MNNG were effective in increasing the dexamethasone-resistant fraction of cells in mutagenized cultures; ICR 191 produced a 35.6-fold increase, and MNNG produced an 8.5-fold increase. All the spontaneous dexamethasone-resistant clones contained glucocorticoid receptors, usually less than half of the amount found in the parental clone. They are therefore strikingly different from dexamethasone-resistant clones derived from the mouse cell lines S49 and W7. Dexamethasone-resistant clones isolated after mutagenesis of CEM-C7 contained, on the average, lower concentrations of receptor than did those isolated spontaneously, and one clone contained no detectable receptor. These results are consistent with a mutational origin for dexamethasone resistance in these human cells at a haploid or functionally hemizygous locus. They also suggest that this is a useful system for mutation assay.  相似文献   

16.
17.
Accumulation of isoprenoids was studied in two cell lines derived from acute T-cell leukemia: CEM-C7 cells, whose growth is inhibited by the glucocorticoid dexamethasone, and CEM-C1 cells, which are resistant to this steroid. Isoprenoids were measured by growing the cells in serum-free medium in the presence of lovastatin, which blocks synthesis of mevalonate, and then labeling with exogenous [3H]mevalonolactone. In both cell lines, isoprenoids associated with proteins were detected in cytoplasm, nucleus, and chromatin, and in the chromatin residue that remains after extraction of histone and nonhistone proteins. Differences in labeling were detected after treatment with dexamethasone in the CEM-C7 line, showing a decrease in the cytoplasmic fraction with a corresponding increase in both the nuclear and chromatin fractions as compared with untreated cells. No change was seen in the CEM-C1 line. In both cell lines, 25-30% of the incorporated label was released by treatment with acid or alkali. However, the majority of the label required treatment with methyl iodide for the release of organic-soluble tritiated products. After extraction with chloroform, the lipid fractions contained farnesol, geraniol, dolichols, and possibly nerolidol.  相似文献   

18.
19.
20.
We have examined glucocorticoid effects on CEM-C7 and CEM-C1 subclones of a leukemic human T-cell line using fluorescence photobleaching recovery techniques. Incubation with 10(-5) M triamcinolone acetonide (TA) increased lipid lateral diffusion on steroid-sensitive CEM-C7 cells but had no effect on steroid-resistant CEM-C1 cells. CEM-C7 cells incubated in serum-free medium responded only to TA but, when fetal calf serum was added to the incubation medium, would also respond to 10(-5) M dexamethasone and hydrocortisone. Thus, glucocorticoids can cause increased lipid lateral diffusion in CEM-C7 cells, while having no effect on steroid-resistant CEM-C1 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号