首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanisms underlying cyclic AMP modulation of action potential-dependent and -independent (spontaneous) release of glycine from terminals synapsing onto sacral dorsal commissural nucleus neurons of lamina X were studied in spinal cord slices using conventional patch-clamp recordings. 3-Isobutyl-1-methylxanthine (IBMX), a phosphodiesterase inhibitor, and forskolin increased the amplitude of evoked inhibitory postsynaptic currents (eIPSCs) in a sensitive manner to protein kinase A (PKA) inhibition (with KT-5720). Direct activation (with adenosine 3',5'-cyclic-monophosphothioate, Sp-isomer) and inhibition (with adenosine 3',5'-cyclic-monophosphothioate, Rp-isomer) of PKA increased and decreased the eIPSC amplitude, respectively. Paired pulse experiments and direct injection of PKA inhibitor fragment 6-22 amide (PKI(6-22)) into the recording neuron revealed that these effects on eIPSC amplitude occurred presynaptically, indicating that evoked glycine release is regulated by presynaptic cAMP via changes in PKA activity. Increasing cAMP also increased spontaneous release of glycine, causing an increased frequency of miniature IPSCs (mIPSCs). In contrast to the effects on evoked release, this response was not solely mediated via PKA, as it was not occluded by PKA inhibition, and both direct inhibition and direct activation of PKA actually enhanced mIPSC frequency. Direct inhibition of cAMP (with SQ 22536) did, however, reduce mIPSC frequency. These results suggest cAMP modulation of evoked and spontaneous release involves different presynaptic mechanisms and proteins.  相似文献   

2.
It has been shown recently that prolonged blockade of neuronal firing activates several homeostatic mechanisms in neocortical networks, including alteration of glutamatergic and GABA-ergic synaptic transmission, and postsynaptic changes are involved in both cases. We studied whether such treatment also affects GABA-ergic synaptic transmission in hippocampal cell cultures. Using whole-cell voltage-clamp recording and local extracellular stimulation, we investigated evoked inhibitory postsynaptic currents (IPSC) in cultured rat hippocampal neurons grown with the sodium channel blocker tetrodotoxin (TTX) and under control conditions. We found that chronic TTX treatment significantly decreased the amplitude of evoked IPSC. This decrease was accompanied by an increase in the coefficient of variation of the above parameter, which is suggestive of a presynaptic mechanism. In contrast, no changes in the IPSC reversal potential or paired-pulse depression were observed in TTX-treated cultures. We conclude that alteration of GABA-ergic synaptic transmission contributes to the homeostatic plasticity in hippocampal neuronal networks, and this change is at least in part due to a presynaptic mechanism.Neirofiziologiya/Neurophysiology, Vol. 36, Nos. 5/6, pp. 432–437, September–December, 2004.This revised version was published online in April 2005 with a corrected cover date and copyright year.  相似文献   

3.
Using the whole-cell patch-clamp technique and stimulation of a single presynaptic terminal, we studied peculiarities of GABA release in inhibitory synapses of cultured neurons of the rat spinal cord. Analyzing the amplitude distributions of evoked inhibitory postsynaptic currents, we estimated the main quantum parameters of transmitter release. It was demonstrated that the minimum transmitter release in GABA-ergic synapses of spinal neurons cultured 9 to 11 days is multiquantum (packets containing at least 2 or 3 quanta). The distribution of the number of released quanta sufficiently agreed with that theoretically calculated according to the Poisson law. It is hypothesized that the minimum simultaneous two (three-)-quantum release of GABA in synapses of spinal neurons can be related to synchronous involvement of two closely adjacent excited terminals, each of which possesses one active zone, or of one terminal with two active zones.  相似文献   

4.
We studied evoked inhibitory postsynaptic currents (eIPSC) using local electrical stimulation of single presynaptic terminals of cultured rat neocortical neurons. According to pharmacological and kinetic properties, these currents were qualified as GABAA-activated. Using autocorrelation analysis of distributions of the eIPSC amplitudes, which were in all cases polymodal, we examined quantal characteristics of the above eIPSC. These results were compared with the values of quantal parameters (N, p, Q, and m) of the current families obtained using approximation by binomial distribution. Amplitude histograms of spontaneous miniature IPSC recorded under conditions of the minimum quantal release of the neurotransmitter were normal (close to Gaussian) with the mode within a 10 pA range, which is very close to analogous parameters calculated using autocorrelation and binomial techniques.  相似文献   

5.
In cultured pyramidal neurons of the rat brain cortex, we recorded (in the whole-cell configuration) postsynaptic currents (PSC) evoked by direct electrical microstimulation of an axon of the interneuron adjacent to the pyramidal cell. Application of 5 M bicuculline rapidly, entirely, and reversibly blocked these currents. Linear changes in the holding potential on the membrane of the postsynaptic cell resulted in linear changes in the amplitude of averaged currents. The currents underwent reversion when the holding potential was –16 mV, which was close to the reversal potential for Cl- ions at their respective concentrations in the extra- and intracellular solutions. We conclude that the recorded currents are inhibitory PSC (IPSC) mediated by GABA release. The amplitudes of the recorded currents varied from a measurable minimum (8 pA) to more than 150 pA at a holding potential on the postsynaptic cell membrane of –80 mV. Times to peak of the high- and low-amplitude currents showed no significant differences, being about 6.4 msec on average. Decays of the current could be satisfactorily approximated by a monoexponential function with a mean time constant of 17 msec. The time constants of IPSC decay were distributed accordingly to the Gaussian law. In some cases, the amplitude distributions of IPSC were unimodal ((with a rightward asymmetry), but in most cases they were clearly polymodal. The amplitude distribution can be described by the sum of several Gaussian distributions; the distance between modes of the Gaussians was 25 ± 6 pA, on average. The obtained estimates of the amplitude of monoquantal GABA-induced IPSC in neurons of the brain cortex allow us to conclude that in various CNS regions the dimension of the vesicles in GABA-ergic synapses formed by inhibitory interneurons is identical.  相似文献   

6.
We analyzed in detail the quantum parameters of evoked inhibitory postsynaptic currents (eIPSC) recorded from synaptically connected cultured cortex neurons using a whole-cell patch-clamp technique. The IPSC were evoked using minimum extracellular stimulation of a presynaptic unit with a frequency of 0.2 sec-1 at the holding potential of -80 mV. Amplitude histograms for eIPSC demonstrated clearly detectable equally spaced peaks. For each histogram, we used a method based on autocorrelation analysis and Monte Carlo simulation to determine whether peaks in the amplitude histograms can result due to finite sampling from the sum of the Gaussian distributions. The autocorrelation function allowed us to measure the peak spacing (and, hence, the mean quantum size) for each histogram; this parameter was found to be 10 pA.  相似文献   

7.
Synaptic transmission is characterized by a remarkable trial-to-trial variability in the postsynaptic response, influencing the way in which information is processed in neuronal networks. This variability may originate from the probabilistic nature of quantal transmitter release, from the stochastic behavior of the receptors, or from the fluctuation of the transmitter concentration in the cleft. We combined nonstationary noise analysis and modeling techniques to estimate the contribution of transmitter fluctuation to miniature inhibitory postsynaptic current (mIPSC) variability. A substantial variability (approximately 30%) in mIPSC decay was found in all cell types studied (neocortical layer2/3 pyramidal cells, granule cells of the olfactory bulb, and interneurons of the cerebellar molecular layer). This large variability was not solely the consequence of the expression of multiple types of GABA(A) receptors, as a similar mIPSC decay variability was observed in cerebellar interneurons that express only a single type (alpha(1)beta(2)gamma(2)) of GABA(A) receptor. At large synapses on these cells, all variance in mIPSC decay could be accounted for by the stochastic behavior of approximately 36 pS channels, consistent with the conductance of alpha(1)beta(2)gamma(2) GABA(A) receptors at physiological temperatures. In contrast, at small synapses, a significant amount of variability in the synaptic cleft GABA transient had to be present to account for the additional variance in IPSC decay over that produced by stochastic channel openings. Thus, our results suggest a synapse-specific contribution of the variation of the spatiotemporal profile of GABA to the decay of IPSCs.  相似文献   

8.
Ivanova  S. Y.  Storozhuk  M. V.  Kostyuk  P. G. 《Neurophysiology》2002,34(2-3):144-146
Paired pulse depression (PPD) of GABA-ergic IPSC was studied in rat hippocampal cell cultures. Synaptic responses were evoked by local extracellular stimulation of the presynaptic units; a whole-cell patch-clamp technique was employed to record responses (IPSC) from the postsynaptic neurons. Paired stimulation (100-msec-long interstimulus interval) resulted in depression of the second IPSC amplitude (IPSC2). This was usually accompanied by an increase in the coefficient of variation (CV) of IPSC2 comparing with that of IPSC1. These results support the involvement of presynaptic mechanism(s) in PPD and suggest a possibility to use PPD alteration as an indicator for the presynaptic origin of modulatory effects. To check this suggestion, we tested whether alteration of the quantum content would affect PPD. We found that reduction of the transmitter release by application of Cd2+ decreased PPD. Post-tetanic potentiation, a well-established presynaptic phenomenon, increased PPD. We conclude that PPD changes may be used as a test for the involvement of presynaptic changes.  相似文献   

9.
The effects of blockers of voltage-gated potassium channels, tetraethylammonium (TEA) and 4-aminopyridine (4-AP), on inhibitory postsynaptic currents (IPSC) evoked by local electrical stimulation of zones of unitary synaptic terminals on hippocampal neurons were studied using a voltage-clamp technique under conditions of low density cell culture. At activation of the transmitter release in the absence of action potentials (when the terminals are in a tetrodotoxin-containing medium), external application of 5 mM 4-AP reversibly increased the averaged IPSC amplitude by 90±30%, while a similar effect of 10 mM TEA reached only 20±7%. The amplitudes of individual evoked IPSC varied between 10 and more than 150 pA. Amplitude histograms of IPSC in all studied neurons (n=14) were of a polymodal nature and could not described by a Gaussian law. An increase in the averaged IPSC amplitude under the influence of potassium channel blockers cannot be described as resulting only from modification of the number of trials without transmitter release (blank events). The mechanism of potassium channel blocker-induced facilitation of IPSC evoked by single synaptic terminals is discussed.  相似文献   

10.
Spontaneous and evoked release of transmitter at neuromuscular junctions in three different leg muscles of a tarantula (Dugesiella hentzi) was investigated. In most cases the spontaneous miniature potentials were released independently, although bursts from single synaptic junctions occasionally occurred. In contrast to recent findings in other arthropod muscles, focal extracellular recording from junctional areas revealed that the evoked release of transmitter quanta followed Poisson's theorem at low quantal content synaptic junctions in arachnid muscles.  相似文献   

11.
Pawlu C  DiAntonio A  Heckmann M 《Neuron》2004,42(4):607-618
Whether glutamate is released rapidly, in an all-or-none manner, or more slowly, in a regulated manner, is a matter of debate. We analyzed the time course of excitatory postsynaptic currents (EPSCs) at glutamatergic neuromuscular junctions of Drosophila and found that the decay phase of EPSCs was protracted to a variable extent. The protraction was more pronounced in evoked and spontaneous quantal EPSCs than in action potential-evoked multiquantal EPSCs; reduced in quantal EPSCs from endophilin null mutants, which maintain release via kiss-and-run; and dependent on synaptotagmin isoform, calcium, and protein phosphorylation. Our data indicate that glutamate is released from individual synaptic vesicles for milliseconds through a fusion pore. Quantal glutamate discharge time course depends on presynaptic calcium inflow and the molecular composition of the release machinery.  相似文献   

12.
J Robinson 《Biometrics》1976,32(1):61-68
We consider models for the release of transmitter in response to nerve impulses, where it is assumed that quanta of transmitter are released from some of n sites, the probability of release from any site being p. It is assumed that the quantal size is either a constant or is distributed as a normal or a gamma variate. Observations on both spontaneous potentials and evoked potentials are used to obtain moment estimated of n and p. Large sample estimates of the standard errors of these estimates are given.  相似文献   

13.
Beta‐adrenoceptors (β2‐AR s) have beneficial effects on prefrontal cortex (PFC ) working memory, however, the cellular and molecular mechanisms are unclear yet. In this study, we probed the effect of β2‐AR ‐selective agonist clenbuterol (Clen) on synaptic transmission in layer 5/6 pyramidal neurons of PFC . Bath application of Clen reduced spontaneous IPSC (sIPSC ) frequency without effects on sEPSC s. Clen did not alter the frequency and amplitude of miniature IPSC s (mIPSC s), but exerted heterogeneous effects on evoked IPSC s (eIPSC s) recorded from PFC layer 5/6 pyramidal neurons. Clen decreased the firing rate of action potentials of fast‐spiking GABA ergic interneurons. Clen‐induced hyperpolarization of fast‐spiking GABA ergic interneurons required potentiation of an inward rectifier K+ channels. Clen‐induced hyperpolarization of fast‐spiking interneurons was dependent on Gs protein rather than cAMP and protein kinase A. Our findings demonstrate that Clen (10 μM) enhances inward rectifier K+ channels via Gs protein to cause membrane hyperpolarization of fast‐spiking GABA ergic interneurons resulting in reduction of action potentials firing rate to reduce GABA ergic transmission.

  相似文献   

14.
We have examined the physiological properties of transmission at newly formed synapses between sympathetic preganglionic neurons and sympathetic ganglion neurons in vitro. Chick neurons were labeled with fluorescent carbocyanine dyes before they were placed into culture (Honig and Hume, 1986), and were studied by making intracellular recordings during the first 2 weeks of coculture. Evoked monosynaptic excitatory postsynaptic potentials (EPSPs) were not observed until 48 h of coculture. Beyond this time, the frequency with which connected pairs could be found did not vary greatly with time. With repetitive stimulation, the evoked monosynaptic EPSPs fluctuated in amplitude from trial to trial and showed depression at frequencies as low as 1 Hz. To gain further information about the quantitative properties of transmission at newly formed synapses, we analyzed the pattern of fluctuations of delayed release EPSPs. In mature systems, delayed release EPSPs are known to represent responses to single quanta, or to the synchronous release of a small number of quanta. For more than half of the connections we studied, the histograms of delayed release EPSPs were extremely broad. This result suggested that either quantal reponses are drawn from a continuous distribution that has a large coefficient of variation or that there are several distinct size classes of quantal responses. The pattern of fluctuation of monosynaptic EPSPs was consistent with both of these possibilities, and was inconsistent with the possibility that monosynaptic EPSPs are composed of quantal subunits with very little intrinsic variation. Although variation in the size of responses to single quanta might arise in a number of ways, one attractive explanation for our results is that the density and type of acetylcholine receptors varies among the different synaptic sites on the surface of developing sympathetic ganglion neurons.  相似文献   

15.
We have examined the physiological properties of transmission at newly formed synapses between sympathetic preganglionic neurons and sympathetic ganglion neurons in vitro. Chick neurons were labeled with fluorescent carbocyanine dyes before they were placed into culture (Honig and Hume, 1986), and were studied by making intracellular recordings during the first 2 weeks of coculture. Evoked monosynaptic excitatory postsynaptic potentials (EPSPs) were not observed until 48 h of coculture. Beyond this time, the frequency with which connected pairs could be found did not vary greatly with time. With repetitive stimulation, the evoked monosynaptic EPSPs fluctuated in amplitude from trial to trial and showed depression at frequencies as low as 1 Hz. To gain further information about the quantitative properties of transmission at newly formed synapses, we analyzed the pattern of fluctuations of delayed release EPSPs. In mature systems, delayed release EPSPs are known to represent responses to single quanta, or to the synchronous release of a small number of quanta. For more than half of the connections we studied, the histograms of delayed release EPSPs were extremely broad. This result suggested that either quantal responses are drawn from a continuous distribution that has a large coefficient of variation or that there are several distinct size classes of quantal responses. The pattern of fluctuations of monosynaptic EPSPs was consistent with both of these possibilities, and was inconsistent with the possibility that monosynaptic EPSPs are composed of quantal subunits with very little intrinsic variation. Although variation in the size of responses to single quanta might arise in a number of ways, one attractive explanation for our results is that the density and type of acetylcholine receptors varies among the different synaptic sites on the surface of developing sympathetic ganglion neurons.  相似文献   

16.
Synchronous activation of dopamine neurons, for instance upon presentation of an unexpected rewarding stimulus, results in the release of dopamine from both terminals in projection areas and somatodendritic sites within the ventral midbrain. This report describes an inhibitory postsynaptic current (IPSC) that was elicited by dopamine in slices from mouse midbrain. The IPSC was tetrodotoxin sensitive, calcium dependent, and blocked by a D2 receptor antagonist. Inhibition of monoamine transporters prolonged the IPSC, indicating that the time course of dopamine neurotransmission is tightly regulated by reuptake. Changing the stimulus intensity altered the amplitude but not the time course of the IPSC, whose onset was faster than could be reproduced with iontophoresis. The results indicate a rapid rise in dopamine concentration at the D2 receptors, suggesting that dopamine that is released by a train of action potentials acts in a localized area rather than in a manner consistent with volume transmission.  相似文献   

17.
To elucidate the mechanisms of calcium regulation of the kinetics of the evoked neurotransmitter quantal release, we have investigated the temporal parameters of acetylcholine secretion in the mouse neuro-muscular junction at varying extracellular calcium concentration, in the presence of calcium channel blockers or intracellular calcium buffers. Acetylcholine secretion was induced by the motor nerve stimulation at a low frequency, which did not produce facilitation of the neurotransmitter release. The analysis of histograms of synaptic delays of uniquantal endplate currents recorded during 50 ms after the presynaptic action potential revealed three components of the secretion process: early and late periods of synchronous release and a delayed asynchronous release. At reduced extracellular calcium level, the relative number of quanta released during the asynchronous phase of secretion increased, while the rate of quantal release during the early synchronous period decreased. The findings support the hypothesis of participation of low- and high-affinity calcium sensors with different calcium binding kinetics in regulation of, respectively, synchronous and asynchronous release of neurotransmitter quanta.  相似文献   

18.
Immortalized rat brain endothelial RBE4 cells do not express choline acetyltransferase (ChAT), but they do express an endogenous machinery that enables them to release specifically acetylcholine (ACh) on calcium entry when they have been passively loaded with the neurotransmitter. Indeed, we have previously reported that these cells do not release glutamate or GABA after loading with these transmitters. The present study was set up to engineer stable cell lines producing ACh by transfecting them with an expression vector construct containing the rat ChAT. ChAT transfectants expressed a high level of ChAT activity and accumulated endogenous ACh. We examined evoked ACh release from RBE4 cells using two parallel approaches. First, Ca2+-dependent ACh release induced by a calcium ionophore was followed with a chemiluminescent procedure. We showed that ChAT-transfected cells released the transmitter they had synthesized and accumulated in the presence of an esterase inhibitor. Second, ACh released on an electrical depolarization was detected in real time by a whole-cell voltage-clamped Xenopus myocyte in contact with the cell. Whether cells synthesized ACh or whether they were passively loaded with ACh, electrical stimulation elicited the release of ACh quanta detected as inward synaptic-like currents in the myocyte. Repetitive stimulation elicited a continuous train of responses of decreasing amplitudes, with rare failures. Amplitude analysis showed that the currents peaked at preferential levels, as if they were multiples of an elementary component. Furthermore, we selected an RBE4 transgenic clone exhibiting a high level of ChAT activity to introduce the Torpedo vesicular ACh transporter (VAChT) gene. However, as the expression of ChAT was inactivated in stable VAChT transfectants, the potential influence of VAChT on evoked ACh release could only be studied on cells passively loaded with ACh. VAChT expression modified the pattern of ACh delivery on repetitive electrical stimulation. Stimulation trains evoked several groups of responses interrupted by many failures. The total amount of released ACh and the mean quantal size were not modified. As brain endothelial cells are known as suitable cellular vectors for delivering gene products to the brain, the present results suggest that RBE4 cells genetically modified to produce ACh and intrinsically able to support evoked ACh release may provide a useful tool for improving altered cholinergic function in the CNS.  相似文献   

19.
Cerebellar Purkinje neurons maintain high firing rates but their synaptic terminals depress only moderately, raising the question of how vesicle depletion is minimized. To identify mechanisms that limit synaptic depression, we evoked 100 Hz trains of GABAergic inhibitory postsynaptic currents (IPSCs) in cerebellar nuclear neurons by stimulating Purkinje axons in mouse brain slices. The paired-pulse ratio (IPSC(2)/IPSC(1)) of the total IPSC was approximately 1 and the steady-state ratio (IPSC(20)/IPSC(1)) was approximately 0.5, suggesting a high response probability of postsynaptic receptors, without an unusually high release probability. Three-dimensional electron microscopic reconstructions of Purkinje boutons revealed multiple active zones without intervening transporters, suggestive of "spillover"-mediated transmission. Simulations of boutons with 10-16 release sites, in which transmitter from any site can reach all receptors opposite the bouton, replicated multiple-pulse depression during normal, high, and low presynaptic Ca influx. These results suggest that release from multiple-site boutons limits depletion-based depression, permitting prolonged, high-frequency inhibition at corticonuclear synapses.  相似文献   

20.
To determine the role of presynaptic ryanodine receptors in the regulation of the kinetics of neurotransmitter quantum secretion caused by a nerve impulse in the experiments on the mouse neuromuscular junction, temporal parameters of phase synchronous and asynchronous delayed release of acetylcholine under the conditions of ryanodine receptors block and rhythmic stimulation were examined. The analysis of histograms of synaptic delays of the uni-quantal end-plate currents registered within 50 ms after the onset of the presynaptic action potential showed that ryanodine receptor blockers ryanodine, TMB-8 and dantrolene reduced the intensity of both phase synchronous and delayed asynchronous release of the mediator. The proportion of quanta released synchronously increased at the expense of the reduction of quantum numbers forming the delayed asynchronous release, i.e., there was a redistribution of quanta between synchronous and asynchronous phases of secretion. A block of ryanodine receptors also reduced the fluorescence intensity of the specific fluorescent calcium-sensitive dye Fluo-3 AM, which indicates a decrease in the intracellular calcium ion concentration. Thus, the presynaptic ryanodine receptors control the intracellular content of calcium ions under repetitive stimulation of the nerve endings and contribute to the modulation of the time parameters of the evoked release of the neurotransmitter quanta by increasing the intensity of the delayed asynchronous release of neurotransmitters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号