首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The seven conserved enzymatic domains required for tryptophan (Trp) biosynthesis are encoded in seven genetic regions that are organized differently (whole-pathway operons, multiple partial-pathway operons, and dispersed genes) in prokaryotes. A comparative bioinformatics evaluation of the conservation and organization of the genes of Trp biosynthesis in prokaryotic operons should serve as an excellent model for assessing the feasibility of predicting the evolutionary histories of genes and operons associated with other biochemical pathways. These comparisons should provide a better understanding of possible explanations for differences in operon organization in different organisms at a genomics level. These analyses may also permit identification of some of the prevailing forces that dictated specific gene rearrangements during the course of evolution. Operons concerned with Trp biosynthesis in prokaryotes have been in a dynamic state of flux. Analysis of closely related organisms among the Bacteria at various phylogenetic nodes reveals many examples of operon scission, gene dispersal, gene fusion, gene scrambling, and gene loss from which the direction of evolutionary events can be deduced. Two milestone evolutionary events have been mapped to the 16S rRNA tree of Bacteria, one splitting the operon in two, and the other rejoining it by gene fusion. The Archaea, though less resolved due to a lesser genome representation, appear to exhibit more gene scrambling than the Bacteria. The trp operon appears to have been an ancient innovation; it was already present in the common ancestor of Bacteria and Archaea. Although the operon has been subjected, even in recent times, to dynamic changes in gene rearrangement, the ancestral gene order can be deduced with confidence. The evolutionary history of the genes of the pathway is discernible in rough outline as a vertical line of descent, with events of lateral gene transfer or paralogy enriching the analysis as interesting features that can be distinguished. As additional genomes are thoroughly analyzed, an increasingly refined resolution of the sequential evolutionary steps is clearly possible. These comparisons suggest that present-day trp operons that possess finely tuned regulatory features are under strong positive selection and are able to resist the disruptive evolutionary events that may be experienced by simpler, poorly regulated operons.  相似文献   

3.
The seven conserved enzymatic domains required for tryptophan (Trp) biosynthesis are encoded in seven genetic regions that are organized differently (whole-pathway operons, multiple partial-pathway operons, and dispersed genes) in prokaryotes. A comparative bioinformatics evaluation of the conservation and organization of the genes of Trp biosynthesis in prokaryotic operons should serve as an excellent model for assessing the feasibility of predicting the evolutionary histories of genes and operons associated with other biochemical pathways. These comparisons should provide a better understanding of possible explanations for differences in operon organization in different organisms at a genomics level. These analyses may also permit identification of some of the prevailing forces that dictated specific gene rearrangements during the course of evolution. Operons concerned with Trp biosynthesis in prokaryotes have been in a dynamic state of flux. Analysis of closely related organisms among the Bacteria at various phylogenetic nodes reveals many examples of operon scission, gene dispersal, gene fusion, gene scrambling, and gene loss from which the direction of evolutionary events can be deduced. Two milestone evolutionary events have been mapped to the 16S rRNA tree of Bacteria, one splitting the operon in two, and the other rejoining it by gene fusion. The Archaea, though less resolved due to a lesser genome representation, appear to exhibit more gene scrambling than the Bacteria. The trp operon appears to have been an ancient innovation; it was already present in the common ancestor of Bacteria and Archaea. Although the operon has been subjected, even in recent times, to dynamic changes in gene rearrangement, the ancestral gene order can be deduced with confidence. The evolutionary history of the genes of the pathway is discernible in rough outline as a vertical line of descent, with events of lateral gene transfer or paralogy enriching the analysis as interesting features that can be distinguished. As additional genomes are thoroughly analyzed, an increasingly refined resolution of the sequential evolutionary steps is clearly possible. These comparisons suggest that present-day trp operons that possess finely tuned regulatory features are under strong positive selection and are able to resist the disruptive evolutionary events that may be experienced by simpler, poorly regulated operons.  相似文献   

4.
The available sequences of genes encoding the enzymes associated with histidine biosynthesis suggest that this is an ancient metabolic pathway that was assembled prior to the diversification of Bacteria, Archaea, and Eucarya. Paralogous duplication, gene elongation, and fusion events of several different his genes have played a major role in shaping this biosynthetic route. We have analyzed the structure and organization of histidine biosynthetic genes from 55 complete archaeal genomes and combined it with phylogenetic inference in order to investigate the mechanisms responsible for the assembly of the his pathway and the origin of his operons. We show that a wide variety of different organizations of his genes exists in Archaea and that some his genes or entire his (sub-)operons have been likely transferred horizontally between Archaea and Bacteria. However, we show that, in most Archaea, his genes are monofunctional (except for hisD) and scattered throughout the genome, suggesting that his operons might have been assembled multiple times during evolution and that in some cases they are the result of recent evolutionary events. An evolutionary model for the structure and organization of his genes in LUCA is proposed.  相似文献   

5.
6.
7.
The sequence of a 281-kbp contig from the crenarchaeote Sulfolobus solfataricus P2 was determined and analysed. Notable features in this region include 29 ribosomal protein genes, 12 tRNA genes (four of which contain archaeal-type introns), operons encoding enzymes of histidine biosynthesis, pyrimidine biosynthesis, and arginine biosynthesis, an ATPase operon, numerous genes for enzymes of lipopolysaccharide biosynthesis, and six insertion sequences. The content and organization of this contig are compared with sequences from crenarchaeotes, euryarchaeotes, bacteria, and eukaryotes.  相似文献   

8.
M W Sganga  C E Bauer 《Cell》1992,68(5):945-954
Most species of photosynthetic bacteria synthesize their photosynthetic apparatus only under conditions of reduced oxygen tension. To a large extent, this phenomenon is dependent upon anaerobic induction of photosynthesis gene expression. Here we report an example of a regulatory gene, regA, that is involved in transactivating anaerobic expression of the photosynthetic apparatus. We show that RegA is itself responsible for differential induction of light-harvesting and reaction center gene expression relative to operons for photopigment biosynthesis. Surprisingly, strains disrupted for regA were found to retain normal photosynthetic growth capabilities under high light intensities. We further show that photosynthetic growth in the absence of transactivating structural gene expression is a consequence of the superoperonal organization of the photosynthetic gene cluster.  相似文献   

9.
Conservation of the photosynthesis gene cluster in Rhodospirillum centenum   总被引:5,自引:0,他引:5  
Intraspecies and intergenus complementation analysis were utilized to demonstrate that photosynthesis genes are clustered in distantly related purple photosynthetic bacteria. Specifically, we show that the linkage order for genes involved in bacteriochlorophyll and carotenoid biosynthesis in Rhodospirillum centenum are arranged essentially as in Rhodobacter capsulatus and Rhodobacter sphaeroides. In addition, the location and relative distance observed between the puf and puh operons which encode for light harvesting and reaction-centre structural genes are also conserved between these species. Conservation of the photosynthesis gene cluster implies either that there are structural or regulatory constraints that limit rearrangement of the photosynthesis gene cluster or that there may have been lateral transfer of the photosynthesis gene cluster among different species of phototrophic bacteria.  相似文献   

10.

Background  

The growing conviction that lateral gene transfer plays a significant role in prokaryote genealogy opens up a need for comprehensive evaluations of gene-enzyme systems on a case-by-case basis. Genes of tryptophan biosynthesis are frequently organized as whole-pathway operons, an attribute that is expected to facilitate multi-gene transfer in a single step. We have asked whether events of lateral gene transfer are sufficient to have obscured our ability to track the vertical genealogy that underpins tryptophan biosynthesis.  相似文献   

11.
Leptospira biflexa is a representative of an evolutionarily distinct group of eubacteria. In order to better understand the genetic organization and gene regulatory mechanisms of this species, we have chosen to study the genes required for tryptophan biosynthesis in this bacterium. The nucleotide sequence of the region of the L. biflexa serovar patoc chromosome encoding the trpE and trpG genes has been determined. Four open reading frames (ORFs) were identified in this region, but only three ORFs were translated into proteins when the cloned genes were introduced into Escherichia coli. Analysis of the predicted amino acid sequences of the proteins encoded by the ORFs allowed us to identify the trpE and trpG genes of L. biflexa. Enzyme assays confirmed the identity of these two ORFs. Anthranilate synthase from L. biflexa was found to be subject to feedback inhibition by tryptophan. Codon usage analysis showed that there was a bias in L. biflexa towards the use of codons rich in A and T, as would be expected from its G + C content of 37%. Comparison of the amino acid sequences of the trpE gene product and the trpG gene product with corresponding gene products from other bacteria showed regions of highly conserved sequence.  相似文献   

12.
Phytoplasmas are cell-wallless Gram-positive low G + C bacteria belonging to the Mollicutes that inhabit the cytoplasm of plants and insects. Although phytoplasmas possess two ribosomal RNA (rrn) operons, only one has been fully sequenced. Here, we determined the complete nucleotide sequence of both rrn operons (designated rrnA and rrnB) of onion yellows (OY) phytoplasma. Both operons have rRNA genes organized as 5'-16S-23S-5S-3' with very highly conserved sequences; the 16S, 23S, and 5S rRNA genes are 99.9, 99.8, and 99.1% identical between the two operons. However, the organization of tRNA genes in the upstream region from 16S rRNA gene and in the downstream region from 5S rRNA gene differs markedly. Several promoter candidates were detected upstream from both operons, which suggests that both operons are functional. Interestingly, both have a tRNA(Ile) gene in the 16S-23S spacer region, while the reported rrnB operon of loofah witches' broom phytoplasma does not, indicating heterogenous gene organization of rrnB within phytoplasmas. The phytoplasma tRNA gene organization is similar to that of acholeplasmas, a closely related mollicute, and different from that of mycoplasmas, another mollicute. Moreover, the organization suggests that the rrn operons were derived from that of a related nonmollicute bacterium, Bacillus subtilis. This data should shed light on the evolutionary relationships and phylogeny of the mollicutes.  相似文献   

13.
《Phytochemistry》1995,39(4):737-749
The shikimate pathway produces the three proteinogenic aromatic amino acids, phenylalanine, tyrosine and tryptophan, which are, in addition to several intermediates of the shikimate pathway, intermediates in the biosynthesis of numerous aromatic natural products in higher plants. While there is only little difference in the sequence of the chemical reactions of the pathway in bacteria, fungi and plants, considerable differences exist in the organization and regulation of the shikimate pathway in plants, fungi and bacteria. The recent isolation and characterization of cDNAs and genes coding for enzymes of the shikimate pathway in higher plants have confirmed that plastids are the major, if not only site of aromatic amino acid biosynthesis in plants. Furthermore, the observed differential spatial and temporal expression of genes coding for isozymes of the pathway indicates a complex regulation that we are only beginning to understand.  相似文献   

14.
15.
A 37-kb photosynthesis gene cluster was sequenced in a photosynthetic bacterium belonging to the beta subclass of purple bacteria (Proteobacteria), Rubrivivax gelatinosus. The cluster contained 12 bacteriochlorophyll biosynthesis genes (bch), 7 carotenoid biosynthesis genes (crt), structural genes for photosynthetic apparatuses (puf and puh), and some other related genes. The gene arrangement was markedly different from those of other purple photosynthetic bacteria, while two superoperonal structures, crtEF-bchCXYZ-puf and bchFNBHLM-lhaA-puhA, were conserved. Molecular phylogenetic analyses of these photosynthesis genes showed that the photosynthesis gene cluster of Rvi. gelatinosus was originated from those of the species belonging to the alpha subclass of purple bacteria. It was concluded that a horizontal transfer of the photosynthesis gene cluster from an ancestral species belonging to the alpha subclass to that of the beta subclass of purple bacteria had occurred and was followed by rearrangements of the operons in this cluster.  相似文献   

16.
17.
18.
Current advances in the research and practical application of pleiotropic regulatory genes for antibiotic production in actinomycetes are reviewed. The basic regulatory mechanisms discovered in these bacteria are outlined. The examples described in the review show the importance of the manipulation of regulatory systems that affect the synthesis of antibiotics for the metabolic engineering of actinomycetes. Also, the study of these genes is the basis for the development of genetic engineering approaches to the induction of the “cryptic” part of the actinomycetes secondary metabolome, the capacity of which for the production of biologically active compounds is much larger than the diversity of antibiotics underpinned by traditional microbiological screening. Besides practical problems, the study of regulatory genes for antibiotic biosynthesis will provide insights into the process of evolution of complex regulatory systems that coordinate the expression of gene operons, clusters, and regulons, involved in the control of the secondary metabolism and morphogenesis of actinomycetes.  相似文献   

19.
The antifungal compound miconazole inhibits ergosterol biosynthesis and induces reactive oxygen species (ROS) in susceptible yeast species. To further uncover the mechanism of miconazole antifungal action and tolerance mechanisms, we screened the complete set of haploid Saccharomyces cerevisiae gene deletion mutants for mutants with an altered miconazole sensitivity phenotype. We identified 29 S. cerevisiae genes, which when deleted conferred at least 4-fold hypersensitivity to miconazole. Major functional groups encode proteins involved in tryptophan biosynthesis, membrane trafficking including endocytosis, regulation of actin cytoskeleton, and gene expression. With respect to the antifungal activity of miconazole, we demonstrate an antagonism with tryptophan and a synergy with a yeast endocytosis inhibitor. Because actin dynamics and induction of ROS are linked in yeast, we further focused on miconazole-mediated changes in actin cytoskeleton organization. In this respect, we demonstrate that miconazole induces changes in the actin cytoskeleton, indicative of increased filament stability, prior to ROS induction. These data provide novel mechanistic insights in the mode of action of a ROS-inducing azole.  相似文献   

20.
为了通过基因工程手段提高大肠杆菌色氨酸产量, 对色氨酸生物合成途径中的关键基因trpR、tnaA、aroG和trpED进行了改造。首先通过敲除trpR基因解除了基因组上色氨酸合成和转运关键酶受到的反馈阻遏调控, 进而又敲除了tnaA基因, 阻断了色氨酸的分解代谢。然后, 将色氨酸合成途径的关键酶aroGfbr和trpEDfbr基因串联表达, 以去除色氨酸生物合成途径的瓶颈。与对照MG1655相比, trpR基因单敲菌色氨酸浓度提高了10倍, 双敲菌色氨酸浓度提高了约20倍。pZE12-trpEDfbr转入双敲菌后色氨酸浓度提高到168 mg/L, 而将aroGfbr和trpEDfbr转入双敲菌后, 色氨酸浓度提高到820 mg/L。为构建色氨酸高产菌奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号