首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
2.
Enteropathogenic Escherichia coli (EPEC) was the first pathovar of E. coli to be implicated in human disease; however, no EPEC strain has been fully sequenced until now. Strain E2348/69 (serotype O127:H6 belonging to E. coli phylogroup B2) has been used worldwide as a prototype strain to study EPEC biology, genetics, and virulence. Studies of E2348/69 led to the discovery of the locus of enterocyte effacement-encoded type III secretion system (T3SS) and its cognate effectors, which play a vital role in attaching and effacing lesion formation on gut epithelial cells. In this study, we determined the complete genomic sequence of E2348/69 and performed genomic comparisons with other important E. coli strains. We identified 424 E2348/69-specific genes, most of which are carried on mobile genetic elements, and a number of genetic traits specifically conserved in phylogroup B2 strains irrespective of their pathotypes, including the absence of the ETT2-related T3SS, which is present in E. coli strains belonging to all other phylogroups. The genome analysis revealed the entire gene repertoire related to E2348/69 virulence. Interestingly, E2348/69 contains only 21 intact T3SS effector genes, all of which are carried on prophages and integrative elements, compared to over 50 effector genes in enterohemorrhagic E. coli O157. As E2348/69 is the most-studied pathogenic E. coli strain, this study provides a genomic context for the vast amount of existing experimental data. The unexpected simplicity of the E2348/69 T3SS provides the first opportunity to fully dissect the entire virulence strategy of attaching and effacing pathogens in the genomic context.  相似文献   

3.
Enterohemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC, respectively) strains are closely related human pathogens that are responsible for food-borne epidemics in many countries. Integration host factor (IHF) and the locus of enterocyte effacement-encoded regulator (Ler) are needed for the expression of virulence genes in EHEC and EPEC, including the elicitation of actin rearrangements for attaching and effacing lesions. We applied a proteomic approach, using two-dimensional polyacrylamide gel electrophoresis in combination with matrix-assisted laser desorption ionization-time of flight mass spectrometry and a protein database search, to analyze the extracellular protein profiles of EHEC EDL933, EPEC E2348/69, and their ihf and ler mutants. Fifty-nine major protein spots from the extracellular proteomes were identified, including six proteins of unknown function. Twenty-six of them were conserved between EHEC EDL933 and EPEC E2348/69, while some of them were strain-specific proteins. Four common extracellular proteins (EspA, EspB, EspD, and Tir) were regulated by both IHF and Ler in EHEC EDL933 and EPEC E2348/69. TagA in EHEC EDL933 and EspC and EspF in EPEC E2348/69 were present in the wild-type strains but absent from their respective ler and ihf mutants, while FliC was overexpressed in the ihf mutant of EPEC E2348/69. Two dominant forms of EspB were found in EHEC EDL933 and EPEC E2348/69, but the significance of this is unknown. These results show that proteomics is a powerful platform technology for accelerating the understanding of EPEC and EHEC pathogenesis and identifying markers for laboratory diagnoses of these pathogens.  相似文献   

4.

Background  

Attaching and effacing Escherichia coli (AEEC) are characterized by their ability to cause attaching-and-effacing (A/E) lesions in the gut mucosa of human and animal hosts leading to diarrhoea. The genetic determinants for the production of A/E lesions are located on the locus of enterocyte effacement (LEE), a pathogenicity island that also contains the genes encoding intimin (eae). This study reports data on the occurrence of eae positive E. coli carried by healthy pigs and sheep at the point of slaughter, and on serotypes, intimin variants, and further virulence factors of isolated AEEC strains.  相似文献   

5.
Using a porcine ileal in vitro organ culture model, we have demonstrated that egg yolk-derived antibodies specific for the attaching and effacing Escherichia coli (AEEC) virulence factors intimin and translocated intimin receptor (Tir), but not those specific for the AEEC-secreted proteins EspA, EspB and EspD, significantly reduced the bacterial adherence of the porcine enteropathogenic E. coli strain ECL1001, formerly 86-1390. Moreover, antibodies specific for intimin and Tir also significantly reduced bacterial adherence of heterologous AEEC strains, including human, bovine and canine enteropathogenic E. coli strains, as well as of O157:H7 Shiga toxin-producing E. coli strains in this model. In addition, we demonstrated that the oral administration of these anti-intimin antibodies significantly reduced the extent of attaching and effacing lesions found in the small intestine of weaned pigs challenged with the porcine enteropathogenic E. coli strain ECL1001. Overall, our results underline the potential use of specific egg yolk-derived antibodies as a novel approach for the prevention of AEEC infections.  相似文献   

6.
Attaching and effacing Escherichia coli (AEEC) employ type III secretion system (T3SS) to secrete effector proteins into host cells and regulate their function. Here we have investigated T3SS genes of AEEC for non-neutral evolution. Our analysis revealed non-neutral evolution in three genes (nleE1, nleB2 and nleD) which encode effector proteins. These genes are located outside the locus of enterocyte effacement (LEE). In general, non-LEE effector genes show greater deviation from neutral evolution than LEE effector genes. These results suggest that effector genes located outside LEE are under greater selection pressure than those present in LEE.  相似文献   

7.
We have cloned and determined the nucleotide sequence of the eae gene from a dog attaching and effacing (A/E) Escherichia coli (DEPEC) strain 4221. When comparing the predicted amino acid sequence of the eaeDEPEC to that of the Eae proteins from enteropathogenic E. coli (EPEC), enterohaemorrhagic E. coli O157:H7 (EHEC), Citrobacter freundii biotype 4280, and a swine A/E E. coli strain O45 (PEPEC), the overall sequence identity was 84, 81, 83 and 83%, respectively, with the greatest divergence at the C-terminal end, the putative receptor-binding portion. Interestingly, the DEPEC Eae shares the greatest identity at the C-terminal region with the Citrobacter freundii Eae protein. We have constructed and purified a maltose-binding fusion protein (MBP) containing the product of the entire eae gene of the DEPEC strain 4221. Binding of MBP-EaeDEPEC fusion protein to HEp-2 cells was demonstrated by immunofluorescence microscopy. In addition, the Eae protein of DEPEC (4221) demonstrated a strong serological relationship with that of EPEC (E2348/69) as observed using a polyclonal antiserum against MBP-EaeDEPEC fusion protein.  相似文献   

8.
Attaching and effacing rabbit enteropathogenic Escherichia coli (REPEC) of the O103 serogroup adhere diffusely on HeLa cells and trigger a slow progressive cytopathic effect (CPE) characterized by the recruitment of vinculin and the assembly of actin stress fibres. In contrast to REPEC O103, the reference human EPEC strain E2348/69 is unable to trigger the CPE. In this study, we have shown first that the fimbrial adhesin AF/R2, which mediates the diffuse adhesion of REPEC O103, was not sufficient to induce the CPE capability upon E2348/69. Non-polar mutants of REPEC O103 for espA , espB , espD and eae were then constructed. The four mutants were unable to induce attaching and effacing lesions in the rabbit ileal loop model. The esp mutants were no longer able to induce the CPE, whereas the eae mutant still induced the CPE. Each espA , - B , - D mutant could be fully complemented in trans by the corresponding cloned esp genes from both the parental strain and the CPE-negative E2348/69 strain, indicating that no single esp encodes the information needed to confer the CPE phenotype. In conclusion, the CPE is the first example of an Esp-dependent but Eae (intimin)-independent alteration of the host cell cytoskeleton by certain EPEC strains.  相似文献   

9.
Attaching and effacing Escherichia coli (AEEC) virulence genes include the eae, the tir, the espA and the espB genes. These genes have been sequenced from several AEEC strains. The sequences alignments revealed the presence of constant and variable regions. Multiplex polymerase chain reactions were developed, in order to determine the subtype of each gene present in a particular isolate. AEEC strains isolated from calves dead of diarrhea, from healthy calves and from infected humans were compared. The same pathotypes were found in sick and healthy calves but in inverted proportion. These pathotypes were also found in human AEEC. Although, the human EHEC strains from serotype O157 possessed their own pathotype.  相似文献   

10.
In this study, we have investigated the ability of detoxified Shiga toxin (Stx)-converting bacteriophages Φ3538 (Δstx2::cat) (H. Schmidt et al., Appl. Environ. Microbiol. 65:3855-3861, 1999) and H-19B::Tn10d-bla (D. W. Acheson et al., Infect. Immun. 66:4496-4498, 1998) to lysogenize enteropathogenic Escherichia coli (EPEC) strains in vivo. We were able to transduce the porcine EPEC strain 1390 (O45) with Φ3538 (Δstx2::cat) in porcine ligated ileal loops but not the human EPEC prototype strain E2348/69 (O127). Neither strain 1390 nor strain E2348/69 was lysogenized under these in vivo conditions when E. coli K-12 containing H-19B::Tn10d-bla was used as the stx1 phage donor. The repeated success in the in vivo transduction of an Stx2-encoding phage to a porcine EPEC strain in pig loops was in contrast to failures in the in vitro trials with these and other EPEC strains. These results indicate that in vivo conditions are more effective for transduction of Stx2-encoding phages than in vitro conditions.  相似文献   

11.
Protein translocation into host epithelial cells by infecting enteropathogenic Escherichia coliWolff, C. et al. (1998)Mol. Microbiol. 28, 143–155The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia coli E2348/69Elliott, S.J. et al. (1998)Mol. Microbiol. 28, 1–4  相似文献   

12.
We have characterized the LEE pathogenicity islands (PAIs) of two rabbit-specific strains of enteropathogenic E. coli (REPEC), 83/39 (serotype O15:H-) and 84/110-1 (O103:H2), and have compared them to homologous loci from the human enteropathogenic and enterohaemorrhagic E. coli strains, E2348/69 and EDL933, and another REPEC strain, RDEC-1. All five PAIs contain a 34 kb core region that is highly conserved in gene order and nucleotide sequence. However, the LEE of 83/39 is significantly larger (59 540 basepairs) than those of the human strains, which are less than 44 kb, and has inserted into pheU tRNA. The regions flanking the 34 kb core of 83/39 contain homologues of two putative virulence determinants, efa1/lifA and senA. The LEE of 84/110-1 is approximately 85 kb and is located at pheV tRNA. Its core is almost identical to those of 83/39 and RDEC-1, apart from a larger espF gene, but its flanking regions contain trcA, a putative virulence determinant of EPEC. All three REPEC LEE PAIs contain a gene for an integrase, Int-phe. The LEE PAI of 84/110-1 is also flanked by short direct repeats (representing the 3'-end of pheV tRNA), suggesting that it may be unstable. To investigate this possibility, we constructed a LEE::sacB derivative of 84/110-1 and showed that the PAI was capable of spontaneous deletion. We also showed that Int-phe can mediate site-specific integration of foreign DNA at the pheU tRNA locus of E. coli DH1. Together these results indicate possible mechanisms of mobilization and integration of the LEE PAI.  相似文献   

13.
Enterohemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC, respectively) strains are closely related human pathogens that are responsible for food-borne epidemics in many countries. Integration host factor (IHF) and the locus of enterocyte effacement-encoded regulator (Ler) are needed for the expression of virulence genes in EHEC and EPEC, including the elicitation of actin rearrangements for attaching and effacing lesions. We applied a proteomic approach, using two-dimensional polyacrylamide gel electrophoresis in combination with matrix-assisted laser desorption ionization-time of flight mass spectrometry and a protein database search, to analyze the extracellular protein profiles of EHEC EDL933, EPEC E2348/69, and their ihf and ler mutants. Fifty-nine major protein spots from the extracellular proteomes were identified, including six proteins of unknown function. Twenty-six of them were conserved between EHEC EDL933 and EPEC E2348/69, while some of them were strain-specific proteins. Four common extracellular proteins (EspA, EspB, EspD, and Tir) were regulated by both IHF and Ler in EHEC EDL933 and EPEC E2348/69. TagA in EHEC EDL933 and EspC and EspF in EPEC E2348/69 were present in the wild-type strains but absent from their respective ler and ihf mutants, while FliC was overexpressed in the ihf mutant of EPEC E2348/69. Two dominant forms of EspB were found in EHEC EDL933 and EPEC E2348/69, but the significance of this is unknown. These results show that proteomics is a powerful platform technology for accelerating the understanding of EPEC and EHEC pathogenesis and identifying markers for laboratory diagnoses of these pathogens.  相似文献   

14.
Intimin is an important virulence factor in two groups of enteric pathogens: enteropathogenic Escherichia coli (EPEC), which is a major cause of infant diarrhea in the developing world, and enterohemorrhagic E. coli (EHEC), which has caused large food-borne outbreaks of hemorrhagic colitis in the United States and other developed countries. Intimin is encoded on a 35-kb pathogenicity island called the locus of enterocyte effacement (LEE). At least five antigenic types have been described for the highly variable gene, and each type is generally characteristic of particular evolutionary lineages. We determined the nucleotide sequences of intimin and other LEE genes in two O111 clones that have not been amenable to typing. The sequences from both O111:H8 and O111:H9 differed from the Int-beta that is typical of other clones in the same evolutionary lineage. The sequence from the O111:H8 strains was a mosaic of divergent segments that alternately clustered with Int-alpha, Int-beta, or Int-gamma. The sequence from the O111:H9 clone consistently showed a close relationship with that from E2348/69, a distantly related strain that expresses Int-alpha. The results suggest that there have been multiple acquisitions of the LEE in the EHEC 2/EPEC 2 clonal lineage, with a recent turnover in either O111:H8 or its close relatives. Amino acid substitutions that alter residue charge occurred more frequently than would be expected under random substitution in the extracellular domains of intimin, suggesting that diversifying selection has promoted divergence in this region of the protein. An N-terminal domain that presumably functions in the periplasm may also be under positive selection.  相似文献   

15.
16.
Enteropathogenic Escherichia coli (EPEC) is a leading cause of infantile diarrhea in developing countries. EPEC strain E2348/69 is used worldwide as a prototype to study EPEC genetics and disease. However, isolates of E2348/69 differ phenotypically, reflecting a history of in vitro selection. To identify the genomic and phenotypic changes in the prototype strain, we sequenced the genome of the nalidixic acid-resistant (Nalr) E2348/69 clone. We also sequenced a recent nleF mutant derived by one-step PCR mutagenesis from the Nalr strain. The sequencing results revealed no unintended changes between the mutant and the parent strain. However, loss of the pE2348-2 plasmid and 3 nonsynonymous mutations were found in comparison to the published streptomycin-resistant (Strr) E2348/69 reference genome. One mutation is a conservative amino acid substitution in ftsK. Another, in gyrA, is a mutation known to result in resistance to nalidixic acid. The third mutation converts a stop codon to a tryptophan, predicted to result in the fusion of hflD, the lysogenization regulator, to purB. The purB gene encodes an adenylosuccinate lyase involved in purine biosynthesis. The Nalr clone has a lower growth rate than the Strr isolate when cultured in minimal media, a difference which is corrected upon addition of adenine or by genetic complementation with purB. Addition of adenine or genetic complementation also restored the invasion efficiency of the Nalr clone. This report reconciles longstanding inconsistencies in phenotypic properties of an archetypal strain and provides both reassurance and cautions regarding intentional and unintentional evolution in vitro.  相似文献   

17.
Escherichia coli O26 has been identified as the most common non-O157 Shiga toxin-producing E. coli (STEC) serogroup to cause human illnesses in the United States and has been implicated in outbreaks around the world. E. coli has high genomic plasticity, which facilitates the loss or acquisition of virulence genes. Attaching and effacing E. coli (AEEC) O26 strains have frequently been isolated from bovine feces, and there is a need to better characterize the relatedness of these strains to defined molecular pathotypes and to describe the extent of their genetic diversity. High-throughput real-time PCR was used to screen 178 E. coli O26 isolates from a single U.S. cattle feedlot, collected from May to July 2011, for the presence or absence of 25 O26 serogroup-specific and virulence-associated markers. The selected markers were capable of distinguishing these strains into molecularly defined groups (yielding 18 unique marker combinations). Analysis of the clustered regularly interspaced short palindromic repeat 1 (CRISPR1) and CRISPR2a loci further discriminated isolates into 24 CRISPR types. The combination of molecular markers and CRISPR typing provided 20.8% diversity. The recent CRISPR PCR target SP_O26-E, which was previously identified only in stx2-positive O26:H11 human clinical strains, was identified in 96.4% (161/167 [95% confidence interval, 99.2 to 93.6%]) of the stx-negative AEEC O26:H11 bovine fecal strains. This supports that these stx-negative strains may have previously contained a prophage carrying stx or could acquire this prophage, thus possibly giving them the potential to become pathogenic to humans. These results show that investigation of specific genetic markers may further elucidate our understanding of the genetic diversity of AEEC O26 strains in bovine feces.  相似文献   

18.
Enterohemorrhagic Escherichia coli (EHEC) is the causative agent of bloody diarrhea and extraintestinal sequelae in humans, most importantly hemolytic-uremic syndrome (HUS) and thrombotic thrombocytopenic purpura (TTP). Besides the bacteriophage-encoded Shiga toxin gene (stx), EHEC harbors the locus of enterocyte effacement (LEE), which confers the ability to cause attaching and effacing lesions. Currently, the vast majority of EHEC infections are caused by strains belonging to five O serogroups (the “big five”), which, in addition to O157, the most important, comprise O26, O103, O111, and O145. We hypothesize that these four non-O157 EHEC serotypes differ in their phylogenies. To test this hypothesis, we used multilocus sequence typing (MLST) to analyze a large collection of 250 isolates of these four O serogroups, which were isolated from diseased as well as healthy humans and cattle between 1952 and 2009. The majority of the EHEC isolates of O serogroups O26 and O111 clustered into one sequence type complex, STC29. Isolates of O103 clustered mainly in STC20, and most isolates of O145 were found within STC32. In addition to these EHEC strains, STC29 also included stx-negative E. coli strains, termed atypical enteropathogenic E. coli (aEPEC), yet another intestinal pathogenic E. coli group. The finding that aEPEC and EHEC isolates of non-O157 O serogroups share the same phylogeny suggests an ongoing microevolutionary scenario in which the phage-encoded Shiga toxin gene stx is transferred between aEPEC and EHEC. As a consequence, aEPEC strains of STC29 can be regarded as post- or pre-EHEC isolates. Therefore, STC29 incorporates phylogenetic information useful for unraveling the evolution of EHEC.  相似文献   

19.
Enteropathogenic Escherichia coli (EPEC) cause a characteristic attaching and effacing (A/E) lesion in intestinal epithelial cells that is associated with the expression and export of specific bacterial proteins via a type III secretion pathway. These effector proteins and components of the type III export apparatus are encoded on a pathogenicity island known as the locus of enterocyte effacement (LEE). In this study, we describe a proline-rich protein, EspF, encoded by the LEE that is secreted by the EPEC type III secretion apparatus. Whereas an espF deletion mutant does not synthesize or secrete EspF, surprisingly it retains the ability to induce host signaling events, perform A/E activities, and invade host epithelial cells. Although these results do not indicate an obvious role for EspF in the formation of A/E lesions nor in the invasion of epithelial cells, they do not preclude a role played by EspF in other aspects of EPEC pathogenesis.  相似文献   

20.
Most severe illnesses that are attributed to Shiga toxin-producing Escherichia coli are caused by isolates that also carry a pathogenicity island called the locus of enterocyte effacement (LEE). However, many cases of severe disease are associated with LEE-negative strains. We characterized the virulence gene content and the evolutionary relationships of Escherichia coli isolates of serogroup O174 (formerly OX3), strains of which have been implicated in cases of hemorrhagic colitis and hemolytic uremic syndrome. A total of 56 isolates from humans, farm animals, and food were subjected to multilocus virulence gene profiling (MVGP), and a subset of 16 isolates was subjected to multilocus sequence analysis (MLSA). The MLSA revealed that the O174 isolates fall into four separate evolutionary clusters within the E. coli phylogeny and are related to a diverse array of clonal groups, including enteropathogenic E. coli 2 (EPEC 2), enterohemorrhagic E. coli 2 (EHEC 2), and EHEC-O121. Of the 15 genes that we surveyed with MVGP, only 6 are common in the O174 strains. The different clonal groups within the O174 serogroup appear to have independently acquired and maintained similar sets of genes that include the Shiga toxins (stx1 and stx2) and two adhesins (saa and iha). The absence of certain O island (OI) genes, such as those found on OI-122, is consistent with the notion that certain pathogenicity islands act cooperatively with the LEE island.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号