首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To develop a novel noncatalytic biomass refinery process that can be used as a portable process, superheated steam pyrolysis was investigated to produce both carbonized solid fuels and chemicals using a large-scale reactor. Individual biomass components and native biomass (Sugi, Japanese cedar) were pyrolyzed. Between 150 and 400 degrees C, the vaporizing fractions of cellulose, xylan, and kraft lignin were summarized using a numerical model. Cellulose was converted to glycolaldehyde, furfural, 5-hydroxymethyl furfural and levoglucosan, whereas xylan was converted to glycolaldehyde, furfural, and acetic acid. Kraft lignin produced a slight yield of phenol and guaiacol. The total vaporization fraction of Sugi and its vaporizing rate were explained sufficiently using a numerical model based on the weighted average of the vaporizing properties of the individual components. However, the yields of phenol, guaiacol, and acetic acid were underestimated, while the yields of furfurals and levoglucosan were overestimated. Possible synergetic effects among chemicals in the superheated steam pyrolysis of native biomass were also discussed.  相似文献   

2.
1,3-Propanediol and 2,3-butanediol are two promising chemicals which have a wide range of applications and can be biologically produced. The separation of these diols from fermentation broth makes more than 50% of the total costs in their microbial production. This review summarizes the present state of methods studied for the recovery and purification of biologically produced diols, with particular emphasis on 1,3-propoanediol. Previous studies on the separation of 1,3-propanediol primarily include evaporation, distillation, membrane filtration, pervaporation, ion exchange chromatography, liquid–liquid extraction, and reactive extraction. Main methods for the recovery of 2,3-butanediol include steam stripping, pervaporation, and solvent extraction. No single method has proved to be simple and efficient, and improvements are especially needed with regard to yield, purity, and energy consumption. Perspectives for an improved downstream processing of biologically produced diols, especially 1,3-propanediol are discussed based on our own experience and recent work. It is argued that separation technologies such as aqueous two-phase extraction with short chain alcohols, pervaporation, reverse osmosis, and in situ extractive or pervaporative fermentations deserve more attention in the future.  相似文献   

3.
Membrane technology for the processing of fruit juices and beverages has been applied mainly for clarification using ultrafiltration and microfiltration, and for concentration using reverse osmosis. The effects of product preparation, membrane selection, and operating parameters are important factors influencing filtration rate and product quality. Technological advances related to the development of new membranes, improvement in process engineering, and better understanding of fruit beverage constituents have expanded the range of membrane separation processes. Developments in novel membrane processes, including electrodialysis and pervaporation, increased the array of applications in combination with other technologies for alternate uses in fruit juices and beverages.  相似文献   

4.
ABSTRACT:?

Membrane technology for the processing of fruit juices and beverages has been applied mainly for clarification using ultrafiltration and microfiltration, and for concentration using reverse osmosis. The effects of product preparation, membrane selection, and operating parameters are important factors influencing filtration rate and product quality. Technological advances related to the development of new membranes, improvement in process engineering, and better understanding of fruit beverage constituents have expanded the range of membrane separation processes. Developments in novel membrane processes, including electrodialysis and pervaporation, increased the array of applications in combination with other technologies for alternate uses in fruit juices and beverages.  相似文献   

5.
6.
Dissolved salts in seawater or brackish water are reduced to a potable level through separation techniques, like, distillation, multiple effect vapor compression, evaporation, or by membrane processes such as electro-dialysis reversal, nano-filtration, and reverse osmosis (RO). RO is the most widely used desalination process. Recent advances in RO technology has led to more efficient separation and now is the most cost effective process to operate. The performance of the reverse osmosis process is dependent on concentration of dissolved solids in the feed-water, feed-water pressure, and the membrane strength to withstand system pressure, membrane solute rejection, membrane fouling characteristics, and the required permeate solute concentration. RO is a promising tool that uses cellulose acetate (or) polyamide membrane and is widely chosen as the cost of production is reduced by the use of energy efficient and process control techniques. This paper presents a review on modelling, identification of parameters from single input-outputs and multi input/output lumped systems, dynamic modelling and control of desalination systems in the past twenty years by collecting more than 60 literatures.  相似文献   

7.
In this study, the application of a new polydimethylsiloxane (PDMS)/dual support composite membrane was investigated by incorporating the pervaporation process into the A-B-E (acetone-butanol-ethanol) fermentation. The performance of the A-B-E fermentation using the integrated pervaporation/fermentation process showed higher biomass concentrations and higher glucose consumption rates than those of the A-B-E fermentation without pervaporation. The performance of the membrane separation was studied during the separation of 1-butanol from three different 1-butanol solutions: binary, model, and fermentation culture solutions. The solution-diffusion model, specifically the mass transfer equation based on Fick's First Law, was shown to be applicable to the undefined A-B-E fermentation culture solutions. A quantitative comparison of 1-butanol separation from the three different solutions was made by calculating overall mass transfer coefficients of 1-butanol. It was found that the overall mass transfer coefficients during the separation of binary, model, and fermentation culture solutions were 1.50, 1.26, and 1.08 mm/h, respectively.  相似文献   

8.
芳香族化合物适当时间适当浓度添加到培养基中,可提高真菌漆酶活性,有助于增强其对木质纤维素的利用效率。为了增强斑玉蕈漆酶活性,本文研究了8种芳香族化合物对其酶活的影响及其与菌丝生物量的相关性。研究发现在无诱导物条件下,斑玉蕈漆酶活性和菌丝生物量相关系数r为0.9956,说明它们呈正相关,但是整个培养过程漆酶活性相对较低;供试的芳香族化合物对漆酶活性都有不同程度的诱导作用,其中添加0.1mmol/L的愈创木酚对斑玉蕈漆酶活性诱导作用最大,达到3倍以上,同时提高了斑玉蕈菌丝生长速度和菌丝生物量;而随着添加时间的延长,部分化合物对漆酶活性和菌丝生物量都产生不同程度的抑制作用,这可能因为化合物对菌丝毒性的延长导致菌丝生长变慢或死亡;进一步研究发现,斑玉蕈3个漆酶同工酶基因lcc2lcc3lcc4在诱导剂愈创木酚的影响下转录水平都不同程度地上调。研究结果表明诱导漆酶活性可以提高斑玉蕈菌丝生长速度和生物量,暗示可能通过提高漆酶活性的方法,提高斑玉蕈的培养基利用效率。  相似文献   

9.
Summary Acetobacter xylinum (Gluconacetobacter xylinus) is a bacterium that produces extracellular cellulose under static culture conditions. The highly reticulated cellulose matrix along with the entrapped cellulose-forming bacteria is commonly referred to as a pellicle. The processed bacterial cellulose membrane/film was modified into a composite bacterial cellulose membrane (CBCM) for pervaporation separation of aqueous–organic mixtures. The CBCM was prepared by coating with alginate or alginate+polyvinylpyrrolidone and cross-linking with glutaraldehyde. The pervaporation performance was determined using aqueous–organic mixtures such as, 1:1 (v/v) water–ethanol, water–isopropanol and water–acetone. The pervaporation performance of the CBCM was more effective for zeotropic mixtures (water–acetone) in comparison to the investigated azeotropic mixtures (water–ethanol and water–isopropanol). The selectivity of CBCM was found to be 4.8, 8.8, 19.8 for water–ethanol, water–isopropanol and water–acetone mixtures, respectively. The permeation flux for the water–acetone mixture was found to be 235 ml/m2/h. The present investigation demonstrated that the CBCM could be employed to concentrate azeotropic as well as zeotrope forming binary mixtures by preferential pervaporation of water, with low energy requirements in contrast to the established method of distillation. In addition, the effects of feed composition, operating temperature, membrane thickness, and method of CBCM preparation on pervaporation performance have been evaluated. Investigations with the CBCM revealed that 94.5% ethanol, 98% acetone and 98.5% isopropanol concentrations could be attained from the initial 50% aqueous mixtures of these chemicals by way of pervaporation. In the case of the isopropanol–water mixture the resolving property of the membrane was more evident as the concentration arrived at was 98.5%, in contrast to other binary mixtures. The surface characteristics of the CBCM were revealed by scanning electron microscopy. In view of its properties the CBCM can be useful for pervaporation separation of these chemicals at moderate temperatures and pressure. The CBCM could be employed in the downstream processing of heat-labile and flavor-imparting volatile molecules in the field of food biotechnology and fabrication of membrane bioreactors for on-line product purification. Further studies are under progress to use the membrane for the immobilization of food processing enzymes.  相似文献   

10.
Concentration of benzylpenicillin filtered broths purified by ultrafiltration and fermented broths clarified by ultrafiltration was carried out by reverse osmosis. This study was done using a reverse osmosis laboratory/pilot installation from Paterson Candy International Ltd. whose module has a tubular configuration and a membrane with a molecular weight cut-off of 100 Dalton (ZF99) made of a polyamide film with a rejection of 99% of NaCl. It was concluded that reverse osmosis is an adequate technique to concentrate benzylpenicillin ultrafiltered broths, leading to low losses of benzylpenicillin in the permeate and high benzylpenicillin recovery for high volumetric concentration factors.  相似文献   

11.
The effect of the initial moisture content (X(0)) of amaranth seeds on expansion volume after popping was examined in hot air and superheated steam (SHS), using a fluidized bed system (FBS). The moisturized seeds were prepared under various vapor pressures due to various saturated salt solutions. In hot air, the maximum expansion volume was shown by seeds having X(0) of 0.16 at 260 degrees C for 15 sec, reaching 8.7-fold of the pre-popped seeds. Heating by SHS decreased the volume slightly. Thus, popping of amaranth seeds is influenced not only by the moisture content of the seeds, but also by moisture in the heat media.  相似文献   

12.
In sugar manufacturing industries, initially dilute syrup is obtained from the cane sugar or beetroot, which should be concentrated. In many factories, sugar syrup concentration is carried out using evaporation. This process has two main problems. Firstly, it consumes a huge amount of energy due to high latent heat of water and secondly, heating may decompose the sugar molecules resulting in low‐quality and dark‐colored sugar. Low energy consuming reverse osmosis may be employed for concentrating sugar syrup without decomposing the molecules, resulting in high‐quality sugar with low cost. In this study different commercial reverse osmosis membranes (DS, DSII, PVD, FT30, BW30) and one nanofiltration membrane (NF45) were used for sugar syrup concentration. The results show that nanofiltration NF45 membrane has no effect on sugar syrup concentration. The rejections of sugar using DSII and PVD reverse osmosis membranes vary between 23 % and 33 % for different operating conditions. DS membrane rejected around 10 % of the sugar molecules in best conditions. FT30 membrane initially showed better performance (55 %). However, the rejection was decreased during time (minimum 7 %). For BW30 membrane, the rejection of sugar was better (60 %) compared to the other membranes used in this work. For two‐stage processes (i.e. the permeate of the first stage used as a feed for the second stage) the highest rejection (88 %) was obtained.  相似文献   

13.
A simultaneous extraction-stripping process is proposed for separating volatile products from fermentation broths, it is based on pervaporation through a liquid membrane supported with a hydrophobic porous membrane. The liquid membrane prepared with oleyl alcohol was selected as the most suitable for separating volatile products resulting from acetone-butanol fermentation. The separation performance and stability of the oleyl alcohol liquid membrane were investigated by using dilute aqueous butanol and acetone solutions. The oleyl alcohol liquid membrane was found to be superior by far in both selectivity and permeability of butanol to the better known silicone rubber membrane in its high selectivity for alcohols. Using the oleyl alcohol liquid membrane, the dilute aqueous butanol solutions of around 4 g/L obtained in acetone-butanol fermentation could be concentrated up to 100 times. The stability of this liquid membrane was also quite good as long as the surface tension of the feed solution was less than the critical surface tension of the support membrane. No change in the separation performance was found after the continuous usage in a long period of 100 h.  相似文献   

14.
In an earlier study, it was shown that biofouling predominantly is a feed spacer channel problem. In this article, pressure drop development and biofilm accumulation in membrane fouling simulators have been studied without permeate production as a function of the process parameters substrate concentration, linear flow velocity, substrate load and flow direction. At the applied substrate concentration range, 100–400 μg l?1 as acetate carbon, a higher concentration caused a faster and greater pressure drop increase and a greater accumulation of biomass. Within the range of linear flow velocities as applied in practice, a higher linear flow velocity resulted in a higher initial pressure drop in addition to a more rapid and greater pressure drop increase and biomass accumulation. Reduction of the linear flow velocity resulted in an instantaneous reduction of the pressure drop caused by the accumulated biomass, without changing the biofilm concentration. A higher substrate load (product of substrate concentration and flow velocity) was related to biomass accumulation. The effect of the same amount of accumulated biomass on the pressure drop increase was related to the linear flow velocity. A decrease of substrate load caused a gradual decline in time of both biomass concentration and pressure drop increase. It was concluded that the pressure drop increase over spiral wound reverse osmosis (RO) and nanofiltration (NF) membrane systems can be reduced by lowering both substrate load and linear flow velocity. There is a need for RO and NF systems with a low pressure drop increase irrespective of the biomass formation. Current efforts to control biofouling of spiral wound membranes focus in addition to pretreatment on membrane improvement. According to these authors, adaptation of the hydrodynamics, spacers and pressure vessel configuration offer promising alternatives. Additional approaches may be replacing heavily biofouled elements and flow direction reversal.  相似文献   

15.
Summary Irradiated styrene-grafted cellulose acetate membrane was used for the separation of ethanol by reverse osmosis. Ethanol separation from molasses based fermentation broth resulted in separation efficiency of 90% at an operating pressure of 1400 psig. Lower permeate flux was observed with fermented broth compared to aqueous ethanol.  相似文献   

16.
A biotechnological process concept for generation and in?situ separation of natural β-ionone from β-carotene is presented. The process employs carotenoid cleavage dioxygenases (CCDs), a plant-derived iron-containing nonheme enzyme family requiring only dissolved oxygen as cosubstrate and no additional cofactors. Organophilic pervaporation was found to be very well suited for continuous in?situ separation of β-ionone. Its application led to a highly pure product despite the complexity of the reaction solution containing cell homogenates. Among three different pervaporation membrane types tested, a polyoctylmethylsiloxane active layer on a porous polyetherimide support led to the best results. A laboratory-scale demonstration plant was set up, and a highly pure aqueous–ethanolic solution of β-ionone was produced from β-carotene. The described process permits generation of high-value flavor and fragrance compounds bearing the desired label “natural” according to US and European food and safety regulations and demonstrates the potential of CCD enzymes for selective oxidative cleavage of carotenoids.  相似文献   

17.
A novel chromatographic system introduced here internally generates a concentration gradient of ammonium sulfate (AS) through a long separation channel under a centrifugal force field. Protein samples are exposed to a gradually increasing AS concentration and precipitated along the channel. Then, chromatographic elution is initiated by gradually decreasing the AS concentration in the gradient which causes the proteins to repeat dissolution and precipitation through the channel. Consequently, they are eluted out in the order of their solubility in the AS solution. The separation column consists of a pair of disks equipped with mutually mirror-imaged spiral grooves. A dialysis membrane is sandwiched between the disks to form two identical channels partitioned by the membrane. The disk assembly is mounted on the sealless continuous-flow centrifuge. When a concentrated AS solution is eluted through one channel and water through the other channel in an opposite direction, an exponential AS gradient is formed through the water channel. A series of basic experiments was performed to study the rates of AS transfer and osmosis through the membrane, and the operational parameters including elution time, revolution speed, inclination of gradient, and sample size were optimized using stable protein samples. Preliminary applications were successful in purification of monoclonal antibody from cell culture supernatant and an affinity separation of recombinant ketosteroid isomerase from a crude Escherichia coli lysate.  相似文献   

18.
The production of liquid and gaseous fuels and industrial chemicals from selected biomass by a process known as biorefining is reviewed. Four broad categories of biomass appear to be suitable feedstocks: woody biomass and forest residues, agricultural residues, directly fermentable crop-grown biomass, and municipal solid waste and sewage sludge. Through the development of suppressed methane fermentation techniques, it is possible to produce valuable organic chemicals such as acetic acid and ethyl acetate, and liquid fuel (rather than fuel gas) by exercising various processing alternatives. Thus the entire field of methane fermentation has been broadened. In the petroleum refining industry, it is usually desirable to produce from crude oil an optimal mixture of industrial organic chemicals and fuels, a concept known as coproduction. The biorefining process reviewed appears to be adaptable to this same concept of coproduction using biomass as a feedstock.  相似文献   

19.
A silicone membrane was used to study butanol separation from model butanol solutions and fermentation broth. Depending upon the butanol feed concentration in the model solution and pervaporation conditions, butanol selectivities of 20.88-68.32 and flux values of 158.7-215.4 g m(-)(2) h(-)(1) were achieved. Higher flux values (400 g m(-)(2) h(-)(1)) were obtained at higher butanol concentrations using air as sweep gas. In an integrated process of butanol fermentation-recovery, solvent productivities were improved to 200% of the control batch fermentation productivities. In a batch reactor the hyper-butanol-producing mutant strain C. beijerinckii BA101 utilized 57.3 g/L glucose and produced 24.2 g/L total solvents, while in the integrated process it produced 51.5 g/L (culture volume) total solvents. Concentrated glucose medium was also fermented. The C. beijerinckii BA101 mutant strain was not negatively affected by the pervaporative conditions. In the integrated experiment, acids were not produced. With the active fermentation broth, butanol selectivity was reduced by a factor of 2-3. However, the membrane flux was not affected by the active fermentation broth. The butanol permeate concentration ranged from 26.4 to 95.4 g/L, depending upon butanol concentration in the fermentation broth. Since the permeate of most membranes contains acetone, butanol, and ethanol (and small concentrations of acids), it is suggested that distillation be used for further purification.  相似文献   

20.
A simplified modelling and a simulation of a membrane-coupled anaerobic bioreactor, AMBR were performed to assess the potential of controlled retention of solutes by the membrane, R, on biomass growth and of purified water quality. R was shown to be a major parameter, which enables to uncouple the hydraulic resistance time, HRT from the solute retention time, independent of biomass retention, and has a significant effect on purified water quality. Therefore, from a theoretical point of view, it facilitates reaching high biodegradation in a small volume membrane reactor. The simulation makes it possible: (i) to anticipate the effect and relative weight of model parameters in the mechanisms that rule the AMBR behaviour and (ii) to identify the AMBR parameters and operating modes in order to avoid reactor washout or overload, amplified by R. From the analysis, it appears that it is possible to use any type of membrane, which at least retain the biomass: (i) low R values using microfiltration or ultrafiltration membranes require long HRT or small influent concentration and larger reactor volume to achieve good water quality; (ii) high R values using nanofiltration or reverse osmosis membranes, which will retain the solutes as well as the small-degraded molecules within the anaerobic reactor volume, require short HRT for highly purified water, but necessitate a large investment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号