首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Memories are of the past but for the future, enabling individuals to implement intended plans and actions at the appropriate time. Prospective memory is the specific ability to remember and execute an intended behavior at some designated point in the future. Although sleep is well-known to benefit the consolidation of memories for past events, its role for prospective memory is still not well understood. Here, we show that sleep as compared to wakefulness after prospective memory instruction enhanced the successful execution of prospective memories two days later. We further show that sleep benefited both components of prospective memory, i.e. to remember that something has to be done (prospective component) and to remember what has to be done (retrospective component). Finally, sleep enhanced prospective remembering particularly when attentional resources were reduced during task execution, suggesting that subjects after sleep were able to recruit additional spontaneous-associative retrieval processes to remember intentions successfully. Our findings indicate that sleep supports the maintenance of prospective memory over time by strengthening intentional memory representations, thus favoring the spontaneous retrieval of the intended action at the appropriate time.  相似文献   

3.
Many animals use cues for small-scale navigation, including beacons, landmarks, compasses and geometric properties. Scatter-hoarding animals are a unique system to study small-scale navigation. They have to remember and relocate many individual spatial locations, be fairly accurate in their searching and have to remember these locations for long stretches of time. In this article, we review what is known about cue use in both scatter-hoarding birds and rodents. We discuss the importance of local versus global cues, the encoding of bearings and geometric rules, the use of external compasses such as the Sun and the influence of the shape of experimental enclosures in relocating caches or hidden food. Scatter-hoarding animals are highly flexible in how and what they encode. There also appear to be differences in what scatter-hoarding birds and rodents encode, as well as what scatter-hoarding animals in general encode compared with other animals. Areas for future research with scatter-hoarding animals are discussed in light of what is currently known.  相似文献   

4.
Executive control, the ability to plan one's behaviour to achieve a goal, is a hallmark of frontal lobe function in humans and other primates. In the current study we report neural correlates of executive control in the avian nidopallium caudolaterale, a region analogous to the mammalian prefrontal cortex. Homing pigeons (Columba livia) performed a working memory task in which cues instructed them whether stimuli should be remembered or forgotten. When instructed to remember, many neurons showed sustained activation throughout the memory period. When instructed to forget, the sustained activation was abolished. Consistent with the neural data, the behavioural data showed that memory performance was high after instructions to remember, and dropped to chance after instructions to forget. Our findings indicate that neurons in the avian nidopallium caudolaterale participate in one of the core forms of executive control, the control of what should be remembered and what should be forgotten. This form of executive control is fundamental not only to working memory, but also to all cognition.  相似文献   

5.
Population genetic studies in nonmodel organisms are often hampered by a lack of reference genomes that are essential for whole‐genome resequencing. In the light of this, genotyping methods have been developed to effectively eliminate the need for a reference genome, such as genotyping by sequencing or restriction site‐associated DNA sequencing (RAD‐seq). However, what remains relatively poorly studied is how accurately these methods capture both average and variation in genetic diversity across an organism's genome. In this issue of Molecular Ecology Resources, Dutoit et al. (2016) use whole‐genome resequencing data from the collard flycatcher to assess what factors drive heterogeneity in nucleotide diversity across the genome. Using these data, they then simulate how well different sequencing designs, including RAD sequencing, could capture most of the variation in genetic diversity. They conclude that for evolutionary and conservation‐related studies focused on the estimating genomic diversity, researchers should emphasize the number of loci analysed over the number of individuals sequenced.  相似文献   

6.
《Autophagy》2013,9(7):925-929
The purpose of this review is not to explain autophagy (as clearly there are a plethora of reviews and research papers on the topic) but to provide the autophagy-savvy reader with an overview of the impact of autophagy research on a number of current topics in food biotechnology. To understand this connection, we need to remember that autophagy is, at the end of the day, a type of stress response. Since as humans we are heterotrophic eukaryotic organisms, our cells, and the cells of those organisms that we consume, use autophagy as part of the day-to-day business of living. Thus, a number of food biotechnology processes such as brewing and winemaking employ eukaryotic organisms under autophagy-inducing conditions, as noted below. In addition, food spoilage processes also involve eukayotic organisms and these processes also involve physiological aspects that impinge on autophagy. Finally, the recently introduced concept of “functional foods” introduces the possibility of engineering foodstuff for the induction or inhibition of autophagy in the consumer, with a potential promise of health benefits that merits further research.

In this review, we will provide a perspective on the current literature in these three areas, their relationship to current basic research in autophagy, and their future applicative potential.  相似文献   

7.
Episodic memory and common sense: how far apart?   总被引:10,自引:0,他引:10  
Research has revealed facts about human memory in general and episodic memory in particular that deviate from both common sense and previously accepted ideas. This paper discusses some of these deviations in light of the proceedings of The Royal Society's Discussion Meeting on episodic memory. Retrieval processes play a more critical role in memory than commonly assumed; people can remember events that never happened; and conscious thoughts about one's personal past can take two distinct forms-'autonoetic' remembering and 'noetic' knowing. The serial-dependent-independent (SPI) model of the relations among episodic, semantic and perceptual memory systems accounts for a number of puzzling phenomena, such as some amnesic patients' preserved recognition memory and their ability to learn new semantic facts, and holds that episodic remembering of perceptual information can occur only by virtue of its mediation through semantic memory. Although common sense endows many animals with the ability to remember their past experiences, as yet there is no evidence that humanlike episodic memory-defined in terms of subjective time, self, and autonoetic awareness-is present in any other species.  相似文献   

8.
Encoding strategies dissociate prefrontal activity from working memory demand   总被引:20,自引:0,他引:20  
Bor D  Duncan J  Wiseman RJ  Owen AM 《Neuron》2003,37(2):361-367
It is often proposed that prefrontal cortex is important in organization and control of working memory contents. In some cases, effective reorganization can decrease task difficulty, implying a dissociation between frontal activity and basic memory demand. In a spatial working memory task, we studied the improvement of performance that occurs when materials can be reorganized into higher level groups or chunks. Structured sequences, encouraging reorganization and chunking, were compared with unstructured sequences. Though structured sequences were easier to remember, event-related functional magnetic resonance imaging (fMRI) showed increased activation of lateral frontal cortex, in particular during memory encoding. The results show that, even when memory demand decreases, organization of working memory contents into higher level chunks is associated with increased prefrontal activity.  相似文献   

9.
Reproductive division of labor is a hallmark of multicellular organisms. However, the evolutionary pressures that give rise to delineated germ and somatic cells remain unclear. Here we propose a hypothesis that the mutagenic consequences associated with performing metabolic work favor such differentiation. We present evidence in support of this hypothesis gathered using a computational form of experimental evolution. Our digital organisms begin each experiment as undifferentiated multicellular individuals, and can evolve computational functions that improve their rate of reproduction. When such functions are associated with moderate mutagenic effects, we observe the evolution of reproductive division of labor within our multicellular organisms. Specifically, a fraction of the cells remove themselves from consideration as propagules for multicellular offspring, while simultaneously performing a disproportionately large amount of mutagenic work, and are thus classified as soma. As a consequence, other cells are able to take on the role of germ, remaining quiescent and thus protecting their genetic information. We analyze the lineages of multicellular organisms that successfully differentiate and discover that they display unforeseen evolutionary trajectories: cells first exhibit developmental patterns that concentrate metabolic work into a subset of germ cells (which we call “pseudo-somatic cells”) and later evolve to eliminate the reproductive potential of these cells and thus convert them to actual soma. We also demonstrate that the evolution of somatic cells enables phenotypic strategies that are otherwise not easily accessible to undifferentiated organisms, though expression of these new phenotypic traits typically includes negative side effects such as aging.  相似文献   

10.
Interactions between attention and memory   总被引:4,自引:0,他引:4  
Attention and memory cannot operate without each other. In this review, we discuss two lines of recent evidence that support this interdependence. First, memory has a limited capacity, and thus attention determines what will be encoded. Division of attention during encoding prevents the formation of conscious memories, although the role of attention in formation of unconscious memories is more complex. Such memories can be encoded even when there is another concurrent task, but the stimuli that are to be encoded must be selected from among other competing stimuli. Second, memory from past experience guides what should be attended. Brain areas that are important for memory, such as the hippocampus and medial temporal lobe structures, are recruited in attention tasks, and memory directly affects frontal-parietal networks involved in spatial orienting. Thus, exploring the interactions between attention and memory can provide new insights into these fundamental topics of cognitive neuroscience.  相似文献   

11.
12.
One of the striking features of evolution is the appearance of novel structures in organisms. Recently, Kirschner and Gerhart have integrated discoveries in evolution, genetics, and developmental biology to form a theory of facilitated variation (FV). The key observation is that organisms are designed such that random genetic changes are channeled in phenotypic directions that are potentially useful. An open question is how FV spontaneously emerges during evolution. Here, we address this by means of computer simulations of two well-studied model systems, logic circuits and RNA secondary structure. We find that evolution of FV is enhanced in environments that change from time to time in a systematic way: the varying environments are made of the same set of subgoals but in different combinations. We find that organisms that evolve under such varying goals not only remember their history but also generalize to future environments, exhibiting high adaptability to novel goals. Rapid adaptation is seen to goals composed of the same subgoals in novel combinations, and to goals where one of the subgoals was never seen in the history of the organism. The mechanisms for such enhanced generation of novelty (generalization) are analyzed, as is the way that organisms store information in their genomes about their past environments. Elements of facilitated variation theory, such as weak regulatory linkage, modularity, and reduced pleiotropy of mutations, evolve spontaneously under these conditions. Thus, environments that change in a systematic, modular fashion seem to promote facilitated variation and allow evolution to generalize to novel conditions.  相似文献   

13.
A number of single gene mutations dramatically reduce the ability of fruit flies to learn or to remember. Cloning of the affected genes implicated the adenylyl cyclase second-messenger system as key in learning and memory. The expression patterns of these genes, in combination with other data, indicates that brain structures called mushroom bodies are crucial for olfactory learning. However, the mushroom bodies are not dedicated solely to olfactory processing; they also mediate higher cognitive functions in the fly, such as visual context generalization. Molecular genetic manipulations, coupled with behavioral studies of the fly, will identify rudimentary neural circuits that underly multisensory learning and perhaps also the circuits that mediate more-complex brain functions, such as attention.  相似文献   

14.
A number of single gene mutations dramatically reduce the ability of fruit flies to learn or to remember. Cloning of the affected genes implicated the adenylyl cyclase second-messenger system as key in learning and memory. The expression patterns of these genes, in combination with other data, indicates that brain structures called mushroom bodies are crucial for olfactory learning. However, the mushroom bodies are not dedicated solely to olfactory processing; they also mediate higher cognitive functions in the fly, such as visual context generalization. Molecular genetic manipulations, coupled with behavioral studies of the fly, will identify rudimentary neural circuits that underly multisensory learning and perhaps also the circuits that mediate more-complex brain functions, such as attention.  相似文献   

15.
A central goal of neuroscience is to understand how neural circuits encode memory and guide behaviour. Studying simple, genetically tractable organisms, such as Drosophila melanogaster, can illuminate principles of neural circuit organization and function. Early genetic dissection of D. melanogaster olfactory memory focused on individual genes and molecules. These molecular tags subsequently revealed key neural circuits for memory. Recent advances in genetic technology have allowed us to manipulate and observe activity in these circuits, and even individual neurons, in live animals. The studies have transformed D. melanogaster from a useful organism for gene discovery to an ideal model to understand neural circuit function in memory.  相似文献   

16.
The hallmark of medial temporal lobe amnesia is a loss of episodic memory such that patients fail to remember new events that are set in an autobiographical context (an episode). A further symptom is a loss of recognition memory. The relationship between these two features has recently become contentious. Here, we focus on the central issue in this dispute--the relative contributions of the hippocampus and the perirhinal cortex to recognition memory. A resolution is vital not only for uncovering the neural substrates of these key aspects of memory, but also for understanding the processes disrupted in medial temporal lobe amnesia and the validity of animal models of this syndrome.  相似文献   

17.
Visual cognition,as one of the fundamental aspects of cognitive neuroscience,is generally associated with high-order brain functions in animals and human.Drosophila,as a model organism,shares certain features of visual cognition in common with mammals at the genetic,molecular,cellular,and even higher behavioral levels.From learning and memory to decision making,Drosophila covers a broad spectrum of higher cognitive behaviors beyond what we had expected.Armed with powerful tools of genetic manipulation in Drosophila,an increasing number of studies have been conducted in order to elucidate the neural circuit mechanisms underlying these cognitive behaviors from a genes-brain-behavior perspective.The goal of this review is to integrate the most important studies on visual cognition in Drosophila carried out in mainland China during the last decade into a body of knowledge encompassing both the basic neural operations and circuitry of higher brain function in Drosophila.Here,we consider a series of the higher cognitive behaviors beyond learning and memory,such as visual pattern recognition,feature and context generalization,different feature memory traces,salience-based decision,attention-like behavior,and cross-modal leaning and memory.We discuss the possible general gain-gating mechanism implementing by dopamine-mushroom body circuit in fly's visual cognition.We hope that our brief review on this aspect will inspire further study on visual cognition in flies,or even beyond.  相似文献   

18.
Our knowledge of many aspects of the molecular biology of animal parasitic nematodes has rapidly expanded in recent years but the classical genetic analysis of this group of organisms has yet to emerge as a viable discipline. For example, it is not possible to routinely perform crosses between single males and females to examine the genetic basis of even simple phenotypes such as anthelmintic resistance. This has meant that the function of many cloned parasite genes can only be inferred from sequence comparison with genes from other organisms where the function is known, or by correlation of DNA polymorphisms linked to the gene with phenotypic differences between strains or individuals. In the absence of classical genetic techniques, a molecular solution is to transform a suitable host with the gene of interest, but what defines a suitable host? Here, Warwick Grant describes recent work that aims to provide such a host.  相似文献   

19.
Source memory represents the origin (source) of information. Recently, we proposed that rats (Rattus norvegicus) remember the source of information. However, an alternative to source memory is the possibility that rats selectively encoded some, but not all, information rather than retrieving an episodic memory. We directly tested this ‘encoding failure’ hypothesis. Here, we show that rats remember the source of information, under conditions that cannot be attributed to encoding failure. Moreover, source memory lasted at least seven days but was no longer present 14 days after studying. Our findings suggest that long-lasting source memory may be modelled in non-humans. Our model should facilitate attempts to elucidate the biological underpinnings of source memory impairments in human memory disorders such as Alzheimer''s disease.  相似文献   

20.
Roberts WA 《Current biology : CB》2006,16(15):R601-R603
Recent experiments with rats on a radial maze indicate that they can remember what foods they encountered, and when and where they encountered them. These findings, and others with food-storing birds, challenge the idea that only humans have episodic memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号