首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Luminal brush border and contraluminal basal-lateral segments of the plasma membrane from the same kidney cortex were prepared. The brush border membrane preparation was enriched in trehalase and gamma-glutamyltranspeptidase, whereas the basal-lateral membrane preparation was enriched in (Na+ + K+1)-ATPase. However, the specific activity of (Na+ + K+)-ATPase in brush border membranes also increased relative to that in the crude plasma membrane fraction, suggesting that (Na+ + K+)-ATPase may be an intrinsic constituent of the renal brush border membrane in addition to being prevalent in the basal-lateral membrane. Adenylate cyclase had the same distribution pattern as (Na+ + K+)-ATPase, i.e. higher specific activity in basal-lateral membranes and present in brush border membranes. Adenylate cyclase in both membrane preparations was stimulated by parathyroid hormone, calcitonin, epinephrine, prostaglandins and 5'-guanylylimidodiphosphate. When the agonists were used in combination enhancements were additive. In contrast to the distribution of adenylate cyclase, guanylate cyclase was found in the cytosol and in basal-lateral membranes with a maximal specific activity (NaN3 plus Triton X-100) 10-fold that in brush border membranes. ATP enhanced guanylate cyclase activity only in basal-lateral membranes. It is proposed that guanylate cyclase, in addition to (Na+ + K+)-ATPase, be used as an enzyme "marker" for the renal basal-lateral membrane.  相似文献   

2.
The regulation of adrenergic receptors in rat heart was measured in rats made hyperthyroid by injection with thyroxine and made hypothyroid by addition of propylthiouracil to the drinking water. Hyperthyroid rats display cardiac hypertrophy and a decrease in epididymal fat pad weight. The maximal beta-receptor level of ventricular membranes, as determined by (-)-[3H]dihydroalprenolol binding, was increased 60% by thyroxine treatment and decreased about 30% by propylthiouracil treatment. The affinity of the beta receptor was unchanged after thyroxine or propylthiouracil treatment. The maximal activity of the isoproterenol-stimulated adenylate cyclase (EC 4.6.1.1) varied with thyroid state in a manner parallel to the increase in beta-adrenergic binding sites. Thyroxine treatment also increases by 2-fold the beta receptors in isolated rat fat cells. Propylthiouracil treatment lowered the level of alpha receptors in heart by 30% as measured by [3H]dihydroergocryptine binding, but increased the affinity about 2.5-fold. The highest level of alpha receptors was seen in control hearts. These studies indicate that thyroxine may control the turnover of beta-adrenergic receptors in heart and fat cells and regulate physiological responses in these tissues via a hormone-hormone interplay system. Thyroxine treatment reduced the activity of the membrane-bound Mg2+-ATPase (EC 3.6.1.3) and 5'-mononucleotidase (EC 3.1.3.5) but appears to increase the activity of the (Na+ + K+)ATPase (EC 3.6.1.4).  相似文献   

3.
Pancreas of the cat was fractionated into its subcellular components by centrifugation through an exponential ficoll-sucrose density gradient in a zonal rotor. This enables a preparation of four fractions enriched in plasma membranes, endoplasmic reticulum, mitochondria and zymogen granules, respectively. The first fraction, enriched by 9- to 15-fold in the plasma membrane marker enzymes, hormone-stimulated adenylate cyclase, (Na+K+)-ATPase, and 5'-nucleotidase, is contaminated by membranes derived from endoplasmic reticulum but is virtually free from mitochondrial and zymogen-granule contamination. The second fraction from the zonal gradient shows only moderate enrichment of the above marker enzymes but contains a considerable quantity of plasma membrane marker enzymes and represents mostly rough endoplasmic reticulum. The third fraction contains the bulk of mitochondria and the fourth mainly zymogen granules as assessed by electron microscopy and marker enzymes for both mitochondria and zymogen granules, namely succinic dehydrogenase, trypsin and amylase. Further purification of the plasma membrane fractions by differential and sucrose step-gradient centrifugation yields plasma membranes enriched 40-fold in basal and hormone-stimulated adenylate cyclase and (Na+K+)-ATPase.  相似文献   

4.
A method has been developed for routine high yield separation of canalicular (cLPM) from basolateral (blLPM) liver plasma membrane vesicles of rat liver. Using a combination of rate zonal floatation (TZ- 28 zonal rotor, Sorvall) and high speed centrifugation through discontinuous sucrose gradients, 9-16 mg of cLPM and 15-28 mg of blLPM protein can be isolated in 1 d. cLPM are free of the basolateral markers Na+/K+-ATPase and glucagon-stimulatable adenylate cyclase activities, but are highly enriched with respect to homogenate in the "canalicular marker" enzyme activities leucylnaphthylamidase (48-fold), gamma-glutamyl-transpeptidase (60-fold), 5'-nucleotidase (64-fold), alkaline phosphatase (71-fold), Mg++-ATPase (83-fold), and alkaline phosphodiesterase I (116-fold). In contrast, blLPM are 34-fold enriched in Na+/K+-ATPase activity, exhibit considerable glucagon-stimulatable adenylate cyclase activity, and demonstrate a 4- to 15-fold increase over homogenate in the various "canalicular markers." cLPM have a twofold higher content of sialic acids, cholesterol; and sphingomyelin compared with blLPM. At least three canalicular-(130,000, 100,000, and 58,000 mol wt) and several basolateral-specific protein bands have been detected after SDS PAGE of the two LPM subfractions. Specifically, the immunoglobin A-binding secretory component is restricted to blLPM as demonstrated by immunochemical techniques. These data indicate virtually complete separation of basolateral from canalicular LPM and demonstrate multiple functional and compositional polarity between the two surface domains of hepatocytes.  相似文献   

5.
A membrane fraction enriched in parathyroid hormone (PTH)-sensitive adenylate cyclase and sodium and potassium ion-activated (Na+, K+)-ATPase was prepared from bovine kidney. Tritiated PTH binding to this membrane fraction was dependent on both hormone and membrane protein concentration. Both total and specific binding of the hormone decreased significantly after 5 to 10 min of incubation at 22 degrees. PTH binding was highly specific, being sensitive to inhibition only with active forms of unlabeled hormone (native and 1-34 PTH). Specific binding showed a pH optimum of 7.3 to 7.5. Inhibition of binding of tritiated hormone by unlabeled PTH was also highly effective at pH 6.0, but this apparently specific binding was also inhibited by adrenocorticotropic hormone, insulin, glucagon, and vasopressin. Dissociation of bound hormone was demonstrated, and an apparent dissociation constant of 4.6 X 10(-2) min-1 was obtained. Specific binding was eliminated by pretreatment of the membranes with trypsin. The concentration dependence for inhibition of binding with unlabeled PTH was identical to that for activation of adenylate cyclase in this membrane preparation, and binding was also inhibited by concentrations of calcium in the 0.5 to 2 mM range.  相似文献   

6.
The influence of age on adipocyte alpha-adrenergic receptors was studied by using the binding of [3H]dihydroergocryptine to crude adipocyte membranes from hamsters of different ages (1-10 months). The number of alpha-receptor sites was found to increase with increasing age, but in contrast, their binding affinity remained unchanged. These changes in receptor concentrations, which were not related to cell-size differences, were also accompanied by parallel variations of the alpha-adrenergic responsiveness of the fat-cells.  相似文献   

7.
A preparation of cardiac sarcolemmal membranes is described. These membranes exhibit 9-24-fold purification of (Na+ + K+)-ATPase, potassium-stimulated nitrophenolphosphatase, 5'-nucleotidase, adenylate cyclase, sialic acid content, and beta-receptor number. Sarcolemmal membranes have two classes of binding sites for the calcium entry blocker, bepridil, 70 X 10(12) high-affinity sites/mg, Kd 25-40 nM; and 30 X 10(15) low-affinity sites/mg, Kd 54-70 microM. Binding of bepridil to these sites appears responsible for inhibition of isoprenaline-stimulated and activation of fluoride-stimulated adenylate cyclase. Since basal adenylate cyclase activity is not influenced, bepridil must act not at the catalytic site, but by altering the interactions between beta-receptor and catalytic and regulatory components of adenylate cyclase.  相似文献   

8.
Plasma membranes from normal, full-term human placental trophoblast have been isolated by a new procedure. The method depends upon isopycnic zonal centrifugation using linear sucrose/Ficoll density gradients. Enrichment of plasma membrane marker enzymes with respect to trophoblast homogenate is found in two distinct peaks (designated B and D) of the fractionated effluent recovered from the rotor. Fraction B is enriched with membrane-bound alkaline phosphatase and 5'-nucleotidase, but not with (Na+, K+)-ATPase of F(-)-stimulated adenylate cyclase. It is suggested that this material is derived from the maternal-facing microvillous plasma membrane. Fraction D, enriched with (Na+, K+)-ATPase, F(-)-stimulated adenylate cyclase and, to a smaller extent, with 5'-nucleotidase and alkaline phosphatase is, by exclusion, proposed to be derived from the fetal-facing basal plasma membrane. Both plasma membrane fractions are shown to be free of appreciable contamination, using specific markers for endoplasmic reticulum, mitochondria, nuclei and lysosomes. The separation of the two membrane fractions is shown to depend both upon these membranes forming closed vesicles during homogenization and upon the buoyant densities of such vesicles differing in such a way that microvillous plasma membranes band at a lower density than basal plasma membranes. No separation of the membranes is achieved in gradients in which the vesicles are collapsed.  相似文献   

9.
A simple large-scale purification of alpha 2-adrenergic receptor-enriched membranes from human platelets is described. Binding of the antagonist [3H]yohimbine is enriched 3-5-fold compared to a crude membrane fraction. Binding of low concentrations of the partial agonist 3-H-rho-aminoclonidine is increased 15-20-fold due to a higher binding affinity for the purified membranes. A soluble inhibitor of 3H-rho-aminoclonidine binding to purified membranes is found even in thrice-washed crude platelet membranes. The guanine nucleotides GDP and GTP are found to account for this inhibitory activity. Forskolin-stimulated adenylate cyclase activity is also enriched in the purified membrane fraction. Adenylate cyclase activity is inhibited by alpha 2-agonist to a comparable extent in all membrane fractions. This membrane preparation should prove useful in studies of alpha 2-adrenergic receptor mechanisms.  相似文献   

10.
Basolateral plasma membranes of rat small intestinal epithelium were purified by density gradient centrifugation followed by zonal electrophoresis on density gradients. Crude basolateral membranes were obtained by centrifugation in which the marker enzyme, (Na+ + K+)-ATPase, was enriched 10-fold with respect to the initial homogenate. The major contaminant was a membrane fraction derived from smooth endoplasmic reticulum, rich in NADPH-cytochrome c reductase activity. The crude basolateral membrane preparation could be resolved into the two major components by subjecting it to zonal electrophoresis on density gradients. The result was that (Na+ + K+)-ATPase was purified 22-fold with respect to the initial homogenate. Purification with respect to mitochondria and brush border membranes was 35- and 42-fold, respectively. Resolution of (Na+ + K+)-ATPase from NADPH-cytochrome c reductase by electrophoresis was best with membrane material from adult rats between 180 and 250 g. No resolution between the two marker enzymes occurred with material from young rats of 125 to 140 g. These results demonstrate that zonal electrophoresis on density gradients, a simple and inexpensive technique, has a similar potential to free-flow electrophoresis.  相似文献   

11.
The properties of basal and prostaglandin (PG)-stimulated adenylate cyclase of membrane preparations of P388D1 cells were investigated. Three partially purified membrane fractions were obtained by sucrose density gradient centrifugation at the final step of purification from crude homogenate. About 96% of the basal and 89% of PGE2-stimulated adenylate cyclase activity in the homogenate were recovered in three membrane fractions. Two lighter membrane fractions (I and II), which were enriched 11-fold and 8.4-fold in adenylate cyclase activity over crude homogenate, were pooled and subjected to various studies. Results suggested that the basal activity of the membrane preparations has, as in many other cell types, a relatively broad pH optimum (pH 7.5 to 8.5), requires Mg2+, which must be present in excess ATP, and is inhibited by Ca2+. Highly reactive sulfhydryl group(s), which may be present in the lipid bilayer, is required for the adenylate cyclase activity. Because both fluoride ions and GTP augment the enzymatic activity, P388D1 cell membrane adenylate cyclase must possess stimulatory guanine nucleotide-binding protein. The membrane preparations respond to exogeneously added PG by 1.5-fold to 3-fold increase in adenosine 3'-5' cyclic monophosphate (cAMP) production. The magnitude of PG-responsiveness was dependent on the types of PG and the order of potency in stimulation was PGE1 greater than PGE2 greater than PGI2. PGA1, B1, B2, F1 alpha, and F2 alpha stimulated adenylate cyclase only at the highest concentration tested.  相似文献   

12.
Sarcolemmal and sarcoplasmic reticulum membrane vesicle fractions were isolated from cardiac microsomes. Separation of sarcolemmal and sarcoplasmic reticulum membrane markers was documented by a combination of correlative assay and centrifugation techniques. To facilitate the separation, the crude microsomes were incubated in the presence of ATP, Ca2+, and oxalate to increase the density of the sarcoplasmic reticulum vesicles. After sucrose gradient centrifugation, the densest subfraction (sarcoplasmic reticulum) contained the highest (K+,Ca2+)-ATPase activity and virtually no (Na2+,K+)-ATPase activity, even when latent (Na+,K+)-ATPase activity was unmasked. In addition, the sarcoplasmic reticulum fraction contained no significant sialic acid, beta receptor binding activity, or adenylate cyclase activity. Sarcolemmal membrane fractions were of low buoyant density. Preparations most enriched in sarcolemmal vesicles contained the highest level of all the other parameters and only about 10% of the (K+,Ca2+)-ATPase activity of the sarcoplasmic reticulum fraction. The results suggest that (Na+,K+)-ATPase, sialic acid, beta-adrenergic receptors, and adenylate cyclase can be entirely accounted for by the sarcolemmal content of cardiac microsomes. Gel electrophoresis of the sarcolemmal and sarcoplasmic reticulum membrane fractions showed distinct bands. Membrane proteins exclusive to each of the fractions were also demonstrated by phosphorylation. Cyclic AMP stimulated phosphorylation by [gamma-32P]ATP of two proteins of apparent Mr = 20,000 and 7,000 that were concentrated in sarcoplasmic reticulum, but the stimulation was markedly dependent on the presence of added soluble cyclic AMP-dependent protein kinase. Cyclic AMP also stimulated phosphorylation of membrane proteins in sarcolemma, but this phosphorylation was mediated by an endogenous protein kinase activity. The apparent molecular weights of these phosphorylated proteins were 165,000, 90,000, 56,000, 24,000, and 11,000. The results suggest that sarcolemma may contain an integral enzyme complex, not present in sarcoplasmic reticulum, that contains beta-adrenergic receptors, adenylate cyclase, cyclic AMP-dependent protein kinase, and several substrates of the protein kinase.  相似文献   

13.
A method was developed to isolate renal basolateral membranes from cortical kidney tubule cells of single rats. The isolated membrane fraction was characterized by the measurement of marker enzyme activities and by electron microscopy. 1. After centrifugation of crude plasma membranes on a discontinuous sucrose density gradient the basolateral membranes accumulated at a sucrose density of p= 1.14-1.15 g/ml. The yield was 147 mug membrane protein/g kidney wet weight. Protein recovery was 0.1%. 2. (Na+ + K+)-ATPase was enriched 22-fold from the homogenate. The recovery was 2.6%. The (Na+ + K+)/Mg2+-ATPase ratio was 4.1. 3. The contamination by brush borders was small. Alkaline phosphatase was 1.6-fold enriched and 0.2% was recovered. Aminopeptidase was 1-fold enriched with a recovery of 0.1%. The contamination by mitochondria, lysosomes and endoplasmic reticulum was negligible. 4. In electron micrographs the basolateral membranes showed a typical triple layered profile and were characterized by the presence of junctional complexes, gap junctions or tight junctions.  相似文献   

14.
A tumor-derived protein with a spectrum of biologic activities remarkably similar to that of parathyroid hormone (PTH) has recently been purified and its sequence deduced from cloned cDNA. This PTH-like protein (PLP) has substantial sequence homology with PTH only in the amino-terminal 1-13 region and shows little similarity to other regions of PTH thought to be important for binding to receptors. In the present study, we compared the actions of two synthetic PLP peptides, PLP-(1-34)amide and [Tyr36]PLP-(1-36)amide, with those of bovine parathyroid hormone (bPTH)-(1-34) on receptors and adenylate cyclase in bone cells and in renal membranes. Synthetic PLP peptides were potent activators of adenylate cyclase in canine renal membranes (EC50 = 3.0 nM) and in UMR-106 osteosarcoma cells (EC50 = 0.05 nM). Bovine PTH-(1-34) was 6-fold more potent than the PLP peptides in renal membranes, but was 2-fold less potent in UMR-106 cells. A competitive PTH receptor antagonist, [Tyr34]bPTH-(7-34)amide, rapidly and fully inhibited adenylate cyclase stimulation by the PLP peptides as well as bPTH-(1-34). Competitive binding experiments with 125I-labeled PLP peptides revealed the presence of high affinity PLP receptors in UMR-106 cells IC50 = 3-4 nM) and in renal membranes (IC50 = 0.3 nM). There was no evidence of heterogeneity of PLP receptors. Bovine PTH-(1-34) was equipotent with the PLP peptides in binding to PLP receptors. Likewise, PLP peptides and bPTH-(1-34) were equipotent in competing with 125I-bPTH-(1-34) for binding to PTH receptors in renal membranes. Photoaffinity cross-linking experiments revealed that PTH and PLP peptides both interact with a major 85-kDa and minor 55- and 130-kDa components of canine renal membranes. We conclude that PTH and PLP activate adenylate cyclase by binding to common receptors in bone and kidney. The results further imply that subtle differences exist between PTH and PLP peptides in their ability to induce receptor-adenylate cyclase coupling.  相似文献   

15.
Luminal brush border and contraluminal basal-lateral segments of the plasma membrane from the same kidney cortex were prepared. The brush border membrane preparation was enriched in trehalase and γ-glutamyltranspeptidase, whereas the basal-lateral membrane preparation was enriched in (Na+ + K+)-ATPase. However, the specific activity of (Na+ + K+)-ATPase in brush border membranes also increased relative to that in the crude plasma membrane fraction, suggesting that (Na+ + K+)-ATPase may be an intrinsic constituent of the renal brush border membrane in addition to being prevalent in the basal-lateral membrane. Adenylate cyclase had the same distribution pattern as (Na+ + K+)-ATPase, i.e. higher specific activity in basal-lateral membranes and present in brush border membranes. Adenylate cyclase in both membrane preparations was stimulated by parathyroid hormone, calcitonin, epinephrine, prostaglandins and 5′-guanylylimidodiphosphate. When the agonists were used in combination enhancements were additive. In contrast to the distribution of adenylate cyclase, guanylate cyclase was found in the cytosol and in basal-lateral membranes with a maximal specific activity (NaN3 plus Triton X-100) 10-fold that in brush border membranes. ATP enhanced guanylate cyclase activity only in basal-lateral membranes. It is proposed that guanylate cyclase, in addition to (Na+ + K+)-ATPase, be used as an enzyme “marker” for the renal basal-lateral membrane.  相似文献   

16.
Plasma membranes from bovine corpora lutea have been purified by sucrose density gradient centrifugation. The purified membranes, in addition to binding 125I-hCG, also possess hCG-stimulated adenylate cyclase and NaK-ATPase. The relative purification of 125I-hCG binding, adenylate cyclase and NaK-ATPase on the basis of the specific activities in the whole homogenate were 7.8, 6.4 and 2.6, respectively. The presence of both the hormone sensitive adenylate cyclase and 125I-hCG binding activities suggest that these plasma membranes might possess the ‘receptor’ for gonadotropin.  相似文献   

17.
The regulation of adrenergic receptors in rat heart was measured in rats made hyperthyroid by injection with thyroxine and made hypothyroid by addition of propylthiouracil to the drinking water. Hyperthyroid rats displayed cardiac hypertrophy and a decrease in epididymal gat pad weight. The maximal beta-receptor level of ventricular membranes, as determined by (?)-[3H]dihydroalprenolol binding, was increased 60% by thyroxine treatment and decreased about 30% by propylthiouracil treatment. The affinity of the beta receptor was unchanged after thyroxine or propylthiouracil treatment. The maximal activity of the isoproterenol-stimulated adenylate cyclase (EC 4.6.1.1) varied with thyroid state in a manner parallel to the increase in beta-adrenergic binding sites. Thyroxine treatment also increases by 2-fold the beta receptors in isolated rat fat cells.Propylthiouracil treatment lowered the level of alpha receptors in heart by 30% as measured by [3H]dihydroergocryptine binding, but increased the affinity about 2.5 fold. The highest level of alpha receptors was seen in control hearts. These studies indicate that thyroxine may control the turnover of beta-adrenergic receptors in heart and fat cells and regulate physiological responses in these tissues via a hormone-hormone interplay system.Thyroxine treatment reduced the activity of the membrane-bound Mg2+-ATPase (EC 3.6.1.3) and 5′-mononucleotidase (EC 3.1.3.5) but appears to increase the activity of the (Na+ + K+)ATPase (EC 3.6.1.4).  相似文献   

18.
Rabbit heart membranes possessing the adenylate cyclase activity were isolated and purified by extraction with high ionic strength solutions and centrifugation in the sucrose density gradient. It was shown that the membranes are characterized by a high percentage of cholesterol (molar ratio cholesterol/phospholipids is 0.24) and an increased activity of Na, K-ATPase, which suggests the localization of adenylate cyclase in the sarcolemma. During centrifugation in the sucrose density gradient the activities of andenylate cyclase and Na,K-ATPase are not separated. Treatment of heart sarcolemma with a 0.3% solution of lubrol WX results in 10--20% solubilization of adenylate cyclase. Purification of the enzyme in the membrane fraction is accompanied by a decrease in the activity of phosphodiesterase; however, about 2% of the heart diesterase total activity cannot be removed from the sarcolemma even after its treatment with 0.3% lubrol WX. Epinephrine and NaF activate adenylate cyclase without changing the pH dependence of the enzyme. The alpha-adrenergic antagonist phentolamine has no effect on the adenylate cyclase activation by catecholamines, glucagon and histamine; the beta-adrenergic antagonist alprenolol competitively inhibits the effects of isoproterenol, epinephrine and norepinephrine, having no effect on the enzyme activation by glucagon and histamine. There is no competition between epinephrine, glucagon and histamine for the binding site of the hormone; however, there may occur a competition between the hormone receptors for the binding to the enzyme. A combined action of several hormones on the membranes results in the averaging of their individual activating effects. When the hormones were added one after another, the extent of adenylate cyclase activation corresponded to that induced by the first hormone; the activation was insensitive to the effect of the second hormone added. It is assumed that the outer membrane of myocardium cells contains a adenylate cyclase and three types of receptors, each being capable to interact with the same form of enzyme. The activity of adenylate cyclase is determined by the type of the receptor, to which it is bound and by the amount of the enzyme-receptor complex.  相似文献   

19.
Plasma membrane vesicles containing adenylate cyclase and beta-adrenergic receptors were prepared from 1321N1 human astrocytoma cells by a procedure involving the use of concanavalin A to stabilize the plasma membrane to fragmentation and vesiculation upon cell lysis. Treatment of cells with concanavalin A causes these plasma membrane markers to sediment to a higher density of sucrose and in a narrower band than observed with untreated cells. Upon treatment of the heavy membrane fragments with alpha-methylmannoside to remove bound concanavalin A, the enzyme markers again sediment a lower densities of sucrose. This reversible change in sedimentation behavior has been used to obtain preparations of plasma membranes enriched 14- to 21-fold (recovery 25%) in adenylate cyclase activity and about 12-fold (recovery 16%) in beta-adrenergic receptor density, as compared to lysates. The adenylate cyclase of purified membranes responded normally to isoproterenol and prostaglandin E1. Experiments with S49 and YAC mouse lymphoma cells and human skin fibroblasts indicate that this procedure may be adaptable to the isolation of plasma membranes from a variety of cultured cell lines.  相似文献   

20.
Basal-lateral membranes from the renal cortex of the rabbit were isolated by sucrose gradient centrifugation in a zonal rotor which allows for a large-scale preparation of these membranes. A heterogeneous population of membranes (P4) which contained 29% of the (Na+ + K+)-ATPase found in the homogenate of renal cortex was prepared by differential centrifugation. When pellet P4 was subjected to centrifugation in a sucrose gradient the activity of (Na+ + K+)-ATPase, a marker for basal-lateral membranes, could be separated from enzymatic markers of other organelles. The specific activity of (Na+ + K+)-ATPase was enriched 12-fold at a density of 1.141 g/cm3. Membranes (P alpha) contained in the (Na+ + K+)-ATPase-rich fractions consisted primarily of closed vesicles which exhibited probenecid inhibitable transport of rho-aminohippurate. These membranes did not exhibit Na+-dependent, phlorizin-inhibitable D-glucose transport. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of proteins from P alpha revealed at least six major protein bands with molecular weights of 91000, 81000, 73000, 65000, 47000 and 38000. A small fraction of total alkaline phosphatase found in the homogenate was found in pellet P4. Membranes containing this alkaline phosphatase activity were distributed widely over the gradient, with peak activity found at a density of 1.141 g/cm3. In contrast, when brush borders were subjected to gradient centrifugation under the same conditions as P4, alkaline phosphatase was found in a narrow distribution, with peak activity at a density of 1.158 g/cm3. The principle subcellular localization of the alkaline phosphatase found in P4 could not be determined unambiguously from the data, but the activity did not seem to be primarily associated with classical brush borders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号