首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The angular dependencies of inelastic intensities of Rayleigh scattering of Moessbauer radiation were measured for myoglobin and lysozyme (in the hydration range h = 0.05-0.7). The data were fitted within the framework of model, when two types of intraglobular motions were taken into account: individual motions of small side-chain groups and cooperative motions of segments. The best agreement with the experiment at h > 0.05 was obtained when individual motions of small groups together with the cooperative motions of alpha-helices and beta-sheets for lysozyme, and alpha-helices for myoglobin were considered. At further hydration (h = 0.45), mean-square displacements (x2) of both types of motions strongly increase with the increase in hydration degree, while the motions with a large correlation radius (not less than macromolecule radius) remain nearly the same as for h = 0.05. The results of the study of the radial distribution function deduced by Fourier-transform from the diffuse x-ray measurements together with RSMR data allow one to conclude that the water during protein hydration competes with the intramolecular hydrogen bonds, loosens the protein and increases the internal dynamics. Concurrently, water arranges the ordering of macromolecule, which takes the native structure at h = 0.4-0.7. The analysis of auto and cross-correlation functions of bending fluctuations of alpha-helices in the large domain of lysozyme performed by molecular dynamics allows one to come to the final conclusion that it is the difference in the structural organization of myoglobin and lysozyme and not the presence of SS-bonds in lysozyme macromolecule that is responsible for different structural fluctuations in these proteins.  相似文献   

2.
Hydration relationships of the elastic scattering fraction of M?ssbauer radiation were studied for human serum albumin (HSA), pancreatic trypsin inhibitor and lysozyme within hydration degrees 0 less than or equal to h less than or equal to 0.75 g/g (at T = 295 degrees K) and temperatures 100K less than or equal to T less than or equal to 320 K (for HSA only at h = 0.03; 0.25; 0.41; 0.65). It is shown that the increase of both hydration degree above h greater than 0.1 and temperature above T greater than 200K leads to the appearance of intramolecular mobility in these proteins.  相似文献   

3.
The angular dependencies of inelastic intensities of Rayleigh scatteringof Moessbauer radiation were measured for lysozyme and myoglobin (fordifferent degrees of hydration: from h = 0.05 till h = 0.7). The treating ofthe data at h > 0.05 approves the existence of segmental motions(-helices for myoglobin, -helices and -sheets forlysozyme) as well as of individual motions. Further hydration increase themean-square displacements for both types of intraglobular motions for theseproteins, while the motions of the globule as a whole remain nearlythe same as for h = 0.05. Results of the study of the radial distributionfunction deduced by Fourier – transform from the diffuse x-raymeasurements together with RSMR data allow to conclude that the waterduring hydration of proteins competes with the intramolecular hydrogenbonds, loosens the protein and increases the internal dynamics. At the sametime water arranges the ordering of macromolecule from `glassy' state ath 0.02 to the native state at h = 0.4–0.7. Differentarchitecture of proteins leads to the different structural dynamics as in thecase of lysozyme and myoglobin.  相似文献   

4.
Abstract

The spectra of Rayleigh scattering of Mössbauer radiation (RSMR) and Mössbauer absorption by globular macromolecules are calculated. The dependence of the spectra parameters on hydration is modeled with the account for thermal low-frequency vibrations of the particles constituting the globule. Deformational motions of the macromolecule fragments leading to deviations from its equilibrium spherical shape are considered introducing collective dynamical variables governed by Langevin equations with random sources of external forces. The macromolecule is modeled by a double-layered sphere: a rigid (elastic) core is surrounded by a porous hydration shell filled with fluid. The dynamical properties of the bound water inside the shell are described by the Debye-Brinkman equations. The degree of hydration is introduced by means of a combination of the mass coefficients of the porous shell with fluid and the mass coefficients in the limiting cases when the flow inside the shell is “frozen” and in the case of free flow. The hydration-dependent Lamb-Mössbauer factor and the elastic fraction of the RSMR are calculated and compared with experimental data from the literature.  相似文献   

5.
We used static and dynamic light scattering for comparing the mass (MW) and hydrodynamic radius (R(h)) of several hemoglobin systems, namely human hemoglobin, bovine hemoglobin, human hemoglobin cross-linked with a sebacyl residue, and bovine hemoglobin cross-linked with an adipoyl residue. We measured the MW and R(h) of these systems in 0.1M phosphate buffer at pH 7.0 in the absence and in the presence of either betaine or glycerol up to 1.7 molal concentrations. The 90 degrees scattering was measured with a photon counting machine equipped with a diode laser at 783 nm. The Rayleigh ratio [R(theta)] of the instrument was estimated using R(theta) = 7.19E-6 cm(-1) for toluene at 783 nm. The refractive index increment of hemoglobin solutions was measured using a laser beam at 750 nm. We estimated a value dn/dc = 0.210 cm3/g in the absence and dn/dc = 0.170 in the presence of 1.7 molal osmolites. For all systems both in liganded and unliganded form, the static light scattering data showed a 16% mass increase with increasing concentration of osmolites. The hydrodynamic radii of all investigated systems in the presence and absence of osmolites were close to 3.17 nm. Assuming a partial specific volume nu = 0.739 for hemoglobin, and using spherical geometry, the estimated average hydration volume of hemoglobin was 32.6 L/mole in the absence of osmolites. It decreased to 23.5 L/mole in the presence of 1.7 molal osmolites. Assuming that the density of water in the hydration volume is D = 1.0 g/cm3, the hydration of Hb was 0.51 gH2O/gHb, with a surface density of 0.20 molH2O/A2. The hydration decreased to 0.33 gH2O/gHb and 0.14 molH2O/A2 in the presence of 1.7 molal osmolites. The decreased hydration was compensated by the increased mass (i.e., decreased surface area per unit volume) so that the thickness of the water shell around these proteins remained close to a single layer of water molecules. These findings indicate that the combination of static and dynamic light scattering offer unique means for investigating the relevance of water activity on the structure and function of biological macromolecules. In the case of hemoglobin, the data suggest that the decreased oxygen affinity in the presence of osmolites reported by Colombo et al. (M. F. Colombo, D. C. Rau, and V. A. Parsegian Science, 1992, Vol. 256, pp. 655-659), as due to ligand linked water binding on hemoglobin surface, is part of a complex phenomenon involving the hydration shell of hemoglobin and the formation of low affinity supertetrameric molecules.  相似文献   

6.
We review the concepts of protein dynamics developed over the last 35years and extend applications of the unified model of protein dynamics to heat flow and spatial fluctuations in hydrated myoglobin (Mb) powders. Differential scanning calorimetry (DSC) and incoherent neutron scattering (INS) data on hydration Mb powders are explained by the temperature-dependence of the hydration-shell β(h) process measured by dielectric relaxation spectroscopy (DRS). The unified model explains the temperature dependence of DSC and INS data as a kinetic effect due to a fixed experimental time window and a broad distribution of hydration-shell β(h) fluctuation rates. We review the slaving of large scale protein motions to the bulk solvent α process, and the metastability of Mb molecules in glass forming bulk solvent at low temperatures. This article is part of a Special Issue entitled: "Protein Dynamics: Experimental and Computational Approaches".  相似文献   

7.
A flow injection analysis (FIA) system combined with Rayleigh light scattering (RLS) detection is developed for the sensitive and rapid determination of protein concentration in human serum sample. This method is based on the weak intensity of RLS of Eriochrome Black T (EBT, 2-hydroxy-1-(1-hydroxy-2-naphthylazo)-6-nitronaphthalene-4-sulfonic acid sodium salt), which can be enhanced by the addition of protein in weakly acidic solution. The effects of pH and interfering species on the determination of protein were examined. Calibrations for protein, based on RLS intensity, were linear in the concentration ranges of 7-36 microg/ml for human serum album (HSA) and 8-44 microg/ml for bovine serum album (BSA). The detection limits of the method were found to be 0.882 and 2.507 microg/ml for HSA and BSA, respectively. A relative standard deviation of 0.76% (n=5) was obtained with 20 microg/ml HSA standard solution. The FIA-RLS method was more stable than the general RLS method, and the average RSD value of FIA-RLS was less than that of the general RLS. The sample rate was determined to be 90 samples per hour.  相似文献   

8.
There is a striking disparity between the heart-shaped structure of human serum albumin (HSA) observed in single crystals and the elongated ellipsoid model used for decades to interpret the protein solution hydrodynamics at neutral pH. These two contrasting views could be reconciled if the protein were flexible enough to change its conformation in solution from that found in the crystal. To investigate this possibility we recorded the rotational motions in real time of an erythrosin-bovine serum albumin complex (Er-BSA) over an extended time range, using phosphorescence depolarization techniques. These measurements are consistent with the absence of independent motions of large protein segments in solution, in the time range from nanoseconds to fractions of milliseconds, and give a single rotational correlation time phi(BSA, 1 cP, 20 degrees C) = 40 +/- 2 ns. In addition, we report a detailed analysis of the protein hydrodynamics based on two bead-modeling methods. In the first, BSA was modeled as a triangular prismatic shell with optimized dimensions of 84 x 84 x 84 x 31.5 A, whereas in the second, the atomic-level structure of HSA obtained from crystallographic data was used to build a much more refined rough-shell model. In both cases, the predicted and experimental rotational diffusion rate and other hydrodynamic parameters were in good agreement. Therefore, the overall conformation in neutral solution of BSA, as of HSA, should be rigid, in the sense indicated above, and very similar to the heart-shaped structure observed in HSA crystals.  相似文献   

9.
A molecular model is proposed to explain water 1H NMR spin-lattice relaxation at different levels of hydration (NMR titration method) on collagen. A fast proton exchange model is used to identify and characterize protein hydration compartments at three distinct Gibbs free energy levels. The NMR titration method reveals a spectrum of water motions with three well-separated peaks in addition to bulk water that can be uniquely characterized by sequential dehydration. Categorical changes in water motion occur at critical hydration levels h (g water/g collagen) defined by integral multiples N = 1, 4 and 24 times the fundamental hydration value of one water bridge per every three amino acid residues as originally proposed by Ramachandran in 1968. Changes occur at (1) the Ramachandran single water bridge between a positive amide and negative carbonyl group at h1 = 0.0658 g/g, (2) the Berendsen single water chain per cleft at h2 = 0.264 g/g, and (3) full monolayer coverage with six water chains per cleft level at h3 = 1.584 g/g. The NMR titration method is verified by comparison of measured NMR relaxation compartments with molecular hydration compartments predicted from models of collagen structure. NMR titration studies of globular proteins using the hydration model may provide unique insight into the critical contributions of hydration to protein folding.  相似文献   

10.
Graphite oxide (GO) was prepared by the Hummer procedure, and can be dispersed to stable colloid solution by ultrasonic wave. The GO exhibited an absorption peak at 313 nm, and a resonance Rayleigh scattering (RRS) peak at 490 nm. In pH 4.6 HAc‐NaAc buffer solution, human serum albumin (HSA) combined with GO probe to form large HSA‐GO particles that caused the RRS peak increasing at 490 nm. The increased RRS intensity was linear to HSA concentration in the range 0.50–200 µg/mL. Thus, a new and simple RRS method was proposed for the determination of HSA in samples, with a recovery of 98.1–104%. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
We used neutron scattering and specific hydrogen-deuterium labeling to investigate the thermal dynamics of isotope-labeled amino acids and retinal, predominantly in the active core and extracellular moiety of bacteriorhodopsin (BR) in the purple membrane and the dynamical response to hydration. Measurements on two neutron spectrometers allowed two populations of motions to be characterized. The lower amplitude motions were found to be the same for both the labeled amino acids and retinal of BR and the global membrane. The larger amplitude dynamics of the labeled part, however, were found to be more resilient than the average membrane, suggesting their functional importance. The response to hydration was characterized, showing that the labeled part of BR is not shielded from hydration effects. The results suggest that the inhibition of high-amplitude motions by lowering hydration may play a key role in the slowing down of the photocycle and the proton pumping activity of BR.  相似文献   

12.
The effect of hydration on protein dynamics in photosystem II (PS II) membrane fragments from spinach has been investigated by using the method of quasielastic neutron scattering (QENS) at room temperature. The QENS data obtained indicate that the protein dynamics is strongly dependent on the extent of hydration. In particular, the hydration-induced activation of localized diffusive protein motions and QA reoxidation by QB in PS II appear to be correlated in their onset at a hydration value of about 45% relative humidity (r.h.). These findings underline the crucial functional relevance of localized diffusive protein motions on the picosecond-timescale for the reactions of light-induced photosynthetic water splitting under formation of plastoquinol and molecular oxygen in PS II of green plants. Advanced neutron scattering and complementary techniques to study biological systems. Contributions from the meetings, “Neutrons in Biology”, STFC Rutherford Appleton Laboratory, Didcot, UK, 11–13 July and “Proteins At Work 2007”, Perugia, Italy, 28–30 May 2007.  相似文献   

13.
Quasielastic neutron scattering (QENS) experiments were carried out on powders of F-actin and G-actin hydrated with D2O to characterize the internal dynamics on the picosecond time scale and the Ångstrom length scale. To investigate the effects of hydration, the measurements were done on samples at hydration ratio (h) of 0.4 (mg D2O/mg protein), containing only the first layer of hydration water, and at h = 1.0, containing more layers of water. The QENS spectra, obtained from the measurements at two energy resolutions of 110 and 15 μeV, indicated that the internal motions of both F-actin and G-actin have distributions of motions with distinct correlation times and amplitudes. Increasing hydration changes relative populations of these distinct motions. The effects of hydration were shown to be different between F-actin and G-actin. Elastic incoherent neutron scattering measurements provided the concerted results. The observed effects were interpreted in terms of the dynamical heterogeneity of the actin molecule: in G-actin, more surface loops become flexible and undergo diffusive motions of large amplitudes, whereas in F-actin the molecular interactions that keep the polymerized state suppress the large motions of the surface loops involved with polymerization so that the population of atoms undergoing large motions can increase only to a lesser degree.  相似文献   

14.
Through contact-angle measurements with a number of liquids, on layers of hydrated human serum albumin (HSA), built on anisotropic ultrafilter membranes, the apolar, Lifshitz-van der Waals surface tension component, as well as the polar, electron-acceptor and electron-donor parameters of the hydrated layers could be determined. From these data, it was found that the degree of orientation of the water molecules of hydration of HSA is 98% in the first layer of hydration and 30% of the second layer. The water molecules of hydration are oriented with the H atoms closest to, and the O atoms farthest from, the protein surface.  相似文献   

15.
Conditions (regions of hydration degrees and temperatures) are considered at which effects observed in Rayleigh Scattering of M?ssbauer Radiation and M?ssbauer Absorption Spectroscopy can be attributed to changes in intramolecular mobility, rather than contribution of different types of motions of macromolecules as a whole.  相似文献   

16.
The characteristics of internal molecular motions of bacteriorhodopsin in the purple membrane have been studied by quasielastic incoherent neutron scattering. Because of the quasihomogeneous distribution of hydrogen atoms in biological molecules, this technique enables one to study a wide variety of intramolecular motions, especially those occurring in the picosecond to nanosecond time scale. We performed measurements at different energy resolutions with samples at various hydration levels within a temperature range of 10-300 K. The analysis of the data revealed a dynamical transition at temperatures Td between 180 K and 220 K for all motions resolved at time scales ranging from 0.1 to a few hundred picoseconds. Whereas below Td the motions are purely vibrational, they are predominantly diffusive above Td, characterized by an enormously broad distribution of correlation times. The variation of the hydration level, on the other hand, mainly affects motions slower than a few picoseconds.  相似文献   

17.
Complexation of human serum albumin (HSA) with poly(N-isopropylacrylamide) (PNIPA) ranging in molecular weight (M(PNIPA)) from 2.1 x 10(4) to 1.72 x 10(6) was studied in an aqueous system (pH 3) containing NaCl as a supporting salt. Dynamic light scattering, static light scattering, electrophoretic light scattering, and dialyzing techniques were used as the experimental tool in a suitable combination. The measurements were performed mainly at 25 degrees C and at 0.01 M NaCl as a function of mixing ratio (r(m), molar ratio of PNIPA to HSA). The results of DLS and ELS evidently demonstrated the formation of a water-soluble complex through mixing of HSA and PNIPA. A detailed analysis of SLS data with the aid of dialysis data revealed that the resulting complex is an "intramolecular" complex consisting of a PNIPA chain with several of bound HSA molecules. Both hydrodynamic radius (R(h)) and radius gyration (R(g)) of intramolecular complexes decreased as r(m) was increased. This result correlated well to the fact that the number (n) of bound proteins per polymer decreases with increasing r(m). The size and the molar mass of the complex became large depending on M(PNIPA), but the increase of M(PNIPA) led to a decrease in n at r(m) < 1. The increase in NaCl concentration from 0.01 to 0.3 M brought about the increase in the size and the molar mass of an intramolecular HSA-PNIPA complex prepared at r(m) = 1.1. This was found to be due to an increase of n. A similar trend was observed when temperature rose from 25 to 32 degrees C (close to lower critical solution temperature of PNIPA). However, the effect of temperature on the increase of was strong in comparison with that of ionic strength. On the basis of these results obtained, the complexation mechanism was discussed in detail.  相似文献   

18.
Separate and simultaneous binding effects of paclitaxel (a drug with anti-tumor activity) and estradiol (used for treating multiple maladies) with human serum albumin (HSA) were investigated by fluorescence quenching, UV absorption, circular dichroism, zeta potential and molecular dynamic techniques. An extensive fluorescence quenching was observed during the reaction of drugs and HSA and was rationalized in terms of a static quenching mechanism. The molecular distances between the donor (HSA) and acceptors (paclitaxel or estradiol) in binary and ternary systems were estimated according to F?rster's theory of dipole-dipole non-radiation energy transfer. The features of drug-induced structural disturbances of HSA have been studied in detail by synchronous fluorescence and circular dichroism (CD) analysis. The resonance Rayleigh scattering (RRS) intensities were proportional to the paclitaxel and estradiol concentrations in the range of respectively (0-8)×10(-6) and (0-1)×10(-4) mM in binary systems. The critical induced aggregation concentrations (C(CIAC)) of paclitaxel and estradiol for binary and ternary systems were determined by nonlinear relationships between the enhancement of the RRS intensities and the drug concentrations. A comparison between binary and ternary systems for two drugs allowed us to estimate the effect of a drug on the initial formation aggregation of the second drug. The zeta potential results were used to verify the existence of complexation and confirmed the C(CIAC) values obtained by the RRS technique. This phenomenon was supported by a progressive rise of the protein charge to a reversal point as a consequence of drug binding. The quantitative analysis data of circular dichroism (CD) spectra demonstrated that the binding of paclitaxel and/or estradiol to HSA induced conformational changes in HSA. Moreover, the α-helix content in HSA greatly decreased in the presence of paclitaxel as opposed when estradiol was present. Protein-ligand docking suggested that estradiol bound to residues situated in subdomain IIA of HSA. On the other hand, in the ternary system, the presence of the first drug decreased the binding affinity of the second drug to HSA. Therefore binding effects of paclitaxel and estradiol with HSA alone have different behavior than simultaneous interaction.  相似文献   

19.
We present a detailed analysis of the picosecond-to-nanosecond motions of green fluorescent protein (GFP) and its hydration water using neutron scattering spectroscopy and hydrogen/deuterium contrast. The analysis reveals that hydration water suppresses protein motions at lower temperatures (<∼200 K), and facilitates protein dynamics at high temperatures. Experimental data demonstrate that the hydration water is harmonic at temperatures <∼180–190 K and is not affected by the proteins’ methyl group rotations. The dynamics of the hydration water exhibits changes at ∼180–190 K that we ascribe to the glass transition in the hydrated protein. Our results confirm significant differences in the dynamics of protein and its hydration water at high temperatures: on the picosecond-to-nanosecond timescale, the hydration water exhibits diffusive dynamics, while the protein motions are localized to <∼3 Å. The diffusion of the GFP hydration water is similar to the behavior of hydration water previously observed for other proteins. Comparison with other globular proteins (e.g., lysozyme) reveals that on the timescale of 1 ns and at equivalent hydration level, GFP dynamics (mean-square displacements and quasielastic intensity) are of much smaller amplitude. Moreover, the suppression of the protein dynamics by the hydration water at low temperatures appears to be stronger in GFP than in other globular proteins. We ascribe this observation to the barrellike structure of GFP.  相似文献   

20.
To understand the effect of hydration on protein dynamics, inelastic neutron-scattering experiments were performed on staphylococcal nuclease samples at differing hydration levels: dehydrated, partially hydrated, and hydrated. At cryogenic temperatures, hydration affected the collective motions with energies lower than 5 meV, whereas the high-energy localized motions were independent of hydration. The prominent change was a shift of boson peak toward higher energy by hydration, suggesting a hardening of harmonic potential at local minima on the energy landscape. The 240 K transition was observed only for the hydrated protein. Significant quasielastic scattering at 300 K was observed only for the hydrated sample, indicating that the origin of the transition is the motion activated by hydration water. The neutron-scattering profile of the partially hydrated sample was quite similar to that of the hydrated sample at 100 K and 200 K, whereas it was close to the dehydrated sample at 300 K, indicating that partial hydration is sufficient to affect the harmonic nature of protein dynamics, and that there is a threshold hydration level to activate anharmonic motions. Thus, hydration water controls both harmonic and anharmonic protein dynamics by differing means.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号