首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Within the central nervous system, tetrahydrobiopterin (BH4) is an essential cofactor for dopamine and serotonin synthesis. In addition, BH4 is now established to be an essential cofactor for all isoforms of nitric oxide synthase (NOS). Inborn errors of metabolism affecting BH4 availability are well documented and the clinical presentation can be attributed to a paucity of dopamine, serotonin, and nitric oxide (NO) generation. In this article, we have focussed upon the sensitivity of BH4 to oxidative catabolism and the observation that when BH4 is limiting some cellular sources of NOS may generate superoxide whilst other BH4 saturated NOS enzymes may be generating NO. Such a scenario could favor peroxynitrite generation. If peroxynitrite is not scavenged, e.g., by antioxidants such as reduced glutathione, irreversible damage to critical cellular enzymes could ensue. Such targets include components of the mitochondrial electron transport chain, alpha ketoglutarate dehydrogenase and possibly pyruvate dehydrogenase. Such a cascade of events is hypothesized, in this article, to occur in neurodegerative conditions such as Parkinson’s and Alzheimer’s disease.  相似文献   

2.
During pulmonary edema, the alveolar space is exposed to a hypoxic environment. The integrity of the alveolar epithelial barrier is required for the reabsorption of alveolar fluid. Tight junctions (TJ) maintain the integrity of this barrier. We set out to determine whether hypoxia creates a dysfunctional alveolar epithelial barrier, evidenced by an increase in transepithelial electrical conductance (G(t)), due to a decrease in the abundance of TJ proteins at the plasma membrane. Alveolar epithelial cells (AEC) exposed to mild hypoxia (Po(2) = 50 mmHg) for 30 and 60 min decreased occludin abundance at the plasma membrane and significantly increased G(t). Other cell adhesion molecules such as E-cadherin and claudins were not affected by hypoxia. AEC exposed to hypoxia increased superoxide, but not hydrogen peroxide (H(2)O(2)). Overexpression of superoxide dismutase 1 (SOD1) but not SOD2 prevented the hypoxia-induced G(t) increase and occludin reduction in AEC. Also, overexpression of catalase had a similar effect as SOD1, despite not detecting any increase in H(2)O(2) during hypoxia. Blocking PKC-ζ and protein phosphatase 2A (PP2A) prevented the hypoxia-induced occludin reduction at the plasma membrane and increase in G(t). In summary, we show that superoxide, PKC-ζ, and PP2A are involved in the hypoxia-induced increase in G(t) and occludin reduction at the plasma membrane in AEC.  相似文献   

3.
Manganese superoxide dismutase (MnSOD) provides the first line of defense against superoxide generated in mitochondria. SOD competes with nitric oxide for reaction with superoxide and prevents generation of peroxynitrite, a potent oxidant that can modify proteins to form 3-nitrotyrosine. Thus, sufficient amounts of catalytically competent MnSOD are required to prevent mitochondrial damage. Increased nitrotyrosine immunoreactivity has been reported after traumatic brain injury (TBI); however, the specific protein targets containing modified tyrosine residues and functional consequence of this modification have not been identified. In this study, we show that MnSOD is a target of tyrosine nitration that is associated with a decrease in its enzymatic activity after TBI in mice. Similar findings were obtained in temporal lobe cortical samples obtained from TBI cases versus control patients who died of causes not related to CNS trauma. Increased nitrotyrosine immunoreactivity was detected at 2 h and 24 h versus 72 h after experimental TBI and co-localized with the neuronal marker NeuN. Inhibition and/or genetic deficiency of neuronal nitric oxide synthase (nNOS) but not endothelial nitric oxide synthase (eNOS) attenuated MnSOD nitration after TBI. At 24 h after TBI, there was predominantly polymorphonuclear leukocytes accumulation in mouse brain whereas macrophages were the predominant inflammatory cell type at 72 h after injury. However, a selective inhibitor or genetic deficiency of inducible nitric oxide synthase (iNOS) failed to affect MnSOD nitration. Nitration of MnSOD is a likely consequence of peroxynitrite within the intracellular milieu of neurons after TBI. Nitration and inactivation of MnSOD could lead to self-amplification of oxidative stress in the brain progressively enhancing peroxynitrite production and secondary damage.  相似文献   

4.
Production of reactive oxygen species (ROS) may be increased during hypoxia in pulmonary arteries. In this study, the role of ROS in the effect of hypoxia on endothelin (ET) type B (ETB) receptor-mediated vasocontraction in lungs was determined. In rat intrapulmonary (approximately 0.63 mm ID) arteries, contraction induced by IRL-1620 (a selective ETB receptor agonist) was significantly attenuated after 4 h of hypoxia (30 mmHg Po2) compared with normoxic control (140 mmHg Po2). The effect was abolished by tiron, a scavenger of superoxide anions, but not by polyethylene glycol (PEG)-conjugated catalase, which scavenges H2O2. The hypoxic effect on ETB receptor-mediated vasoconstriction was also abolished by endothelium denudation but not by nitro-L-arginine and indomethacin. Exposure for 4 h to exogenous superoxide anions, but not H2O2, attenuated the vasoconstriction induced by IRL-1620. Confocal study showed that hypoxia increased ROS production in pulmonary arteries that were scavenged by PEG-conjugated SOD. In endothelium-intact pulmonary arteries, the ETB receptor protein was reduced after 4 h of exposure to hypoxia, exogenous superoxide anions, or ET-1. BQ-788, a selective ETB receptor antagonist, prevented these effects. ET-1 production was stimulated in endothelium-intact arteries after 4 h of exposure to hypoxia or exogenous superoxide anions. This effect was blunted by PEG-conjugated SOD. These results demonstrate that exposure to hypoxia attenuates ETB receptor-mediated contraction of rat pulmonary arteries. A hypoxia-induced production of superoxide anions may increase ET-1 release from the endothelium and result in downregulation of ETB receptors on smooth muscle.  相似文献   

5.
In order to investigate the potential neuroprotective role played by glucose metabolism during brain oxygen deprivation, the susceptibility of cultured neurones and astrocytes to 1 h of oxygen deprivation (hypoxia) or oxygen and glucose deprivation (OGD) was examined. OGD, but not hypoxia, promotes dihydrorhodamine 123 and glutathione oxidation in neurones but not in astrocytes reflecting free radical generation in the former cells. A specific loss of mitochondrial complex-I activity, mitochondrial membrane potential collapse, ATP depletion and necrosis occurred in the OGD neurones, but not in the OGD astrocytes. Furthermore, superoxide anion but not nitric oxide formation was responsible for these effects. OGD decreased neuronal but not astrocytic NADPH concentrations; this was not observed in hypoxia and was independent of superoxide or nitric oxide formation. These results suggest that glucose metabolism would supply NADPH, through the pentose-phosphate pathway, aimed at preventing oxidative stress, mitochondrial damage and neurotoxicity during oxygen deprivation to neural cells.  相似文献   

6.
Previous studies have shown that brain tissue hypoxia results in increased N-methyl-D-aspartate (NMDA) receptor activation and receptor-mediated increase in intracellular calcium which may activate Ca++-dependent nitric oxide synthase (NOS). The present study tested the hypothesis that tissue hypoxia will induce generation of nitric oxide (NO) free radicals in cerebral cortex of newborn guinea pigs. Nitric oxide free radical generation was assayed by electron spin resonance (ESR) spectroscopy. Ten newborn guinea pigs were assigned to either normoxic (FiO2 = 21%, n = 5) or hypoxic (FiO2 = 7%, n = 5) groups. Prior to exposure, animals were injected subcutaneously with the spin trapping agents diethyldithiocarbamate (DETC, 400 mg/kg), FeSO4.7H2O (40 mg/kg) and sodium citrate (200mg/kg). Pretreated animals were exposed to either 21% or 7% oxygen for 60 min. Cortical tissue was obtained, homogenized and the spin adducts extracted. The difference of spectra between 2.047 and 2.027 gauss represents production of NO free radical. In hypoxic animals, there was a difference (16.75 ± 1.70 mm/g dry brain tissue) between the spectra of NO spin adducts identifying a significant increase in NO free radical production. In the normoxic animals, however, there was no difference between the two spectra. We conclude that hypoxia results in Ca2+- dependent NOS mediated increase in NO free radical production in the cerebral cortex of newborn guinea pigs. Since NO free radicals produce peroxynitrite in presence of superoxide radicals that are abundant in the hypoxic tissue, we speculate that hypoxia-induced generation of NO free radical will lead to nitration of a number of cerebral proteins including the NMDA receptor, a potential mechanism of hypoxia-induced modification of the NMDA receptor resulting in neuronal injury.  相似文献   

7.
Abstract: The relative roles of the superoxide and hydroxyl radicals in oxidative stress-induced neuronal damage were investigated using organotypic hippocampal slice cultures. Cultures exposed to 100 µ M duroquinone, a superoxide-generating compound, for 3 h developed CA1-selective lesions over a period of 24 h. The damage accounted for ∼64% of the CA1 subfield, whereas CA3 showed just 6% damage, a pattern of damage comparable to that observed following hypoxia/ischaemia. Duroquinone-induced damage was attenuated by a spin-trap agent. In contrast, hydroxyl radical-mediated damage, generated by exposure to 30 µ M ferrous sulphate for 1 h, resulted in a CA3-dominant lesion. The damage developed over 24 h, similar to that observed with duroquinone, but with ∼45% damage in CA3 compared with only 7% in CA1. These data demonstrate a selective vulnerability of the CA1 pyramidal neurones to superoxide-induced damage and suggest that of the free radicals generated following hypoxia/ischaemia, superoxide, rather than hydroxyl radical, is instrumental in producing neuronal damage.  相似文献   

8.
Levels of tetrahydrobiopterin (BH(4)) bound to nitric-oxide synthase (NOS) were examined during multiple turnovers of the enzyme in the presence of an NADPH-regenerating system. Our findings show that NOS-bound BH(4) does not remain in a static state but undergoes redox reactions. Under these experimental conditions, the redox state of BH(4) was determined by the balance between calcium/calmodulin (Ca(2+)/CaM)-dependent oxidation of BH(4) mediated by the uncoupled formation of superoxide/hydrogen peroxide on the one hand and by reductive regeneration of BH(4) on the other hand. BH(4) oxidation was appreciably increased in the presence of arginine. Levels of NOS-bound BH(4) were also examined under single turnover conditions in the absence of an NADPH-regenerating system and in the presence of added superoxide dismutase and catalase to suppress the accumulation of superoxide and hydrogen peroxide. BH(4) oxidation was again dependent on Ca(2+)/CaM. The insensitivity to superoxide dismutase and catalase suggested that the single turnover oxidation of BH(4) did not proceed through superoxide/peroxide, although the involvement of these oxidants could not be definitively excluded. The amount of BH(4) oxidized was highest in the presence of arginine, and this oxidation significantly exceeded that in the presence of N(G)-hydroxy-L-arginine. The findings that single turnover oxidation of BH(4) is stimulated by arginine in the presence of Ca(2+)/CaM and that BH(4) is regenerated are consistent with a role for the pterin as an electron donor in product formation; this role remains to be defined.  相似文献   

9.
The existence of mitochondrial nitric oxide (NO) synthase (mtNOS) has been controversial since it was first reported in 1995. We have addressed this issue by making direct microsensor measurements of NO production in the mitochondria isolated from mouse hearts. Mitochondrial NO production was stimulated by Ca2+ and inhibited by blocking electrogenic Ca2+ uptake or by using NOS antagonists. Cardiac mtNOS was identified as the neuronal isoform by the absence of NO production in the mitochondria of mice lacking the neuronal but not the endothelial or inducible isoforms. In cardiomyocytes from dystrophin-deficient (mdx) mice, elevated intracellular Ca2+, increased mitochondrial NO production, slower oxidative phosphorylation, and decreased ATP production were detected. Inhibition of mtNOS increased contractility in mdx but not in wild-type cardiomyocytes, indicating that mtNOS may protect the cells from overcontracting. mtNOS was also implicated in radiation-induced cell damage. In irradiated rat/mouse urinary bladders, we have evidence that mitochondrially produced NO damages the urothelial "umbrella" cells that line the bladder lumen. This damage disrupts the permeability barrier thereby creating the potential to develop radiation cystitis. RT-PCR and Southern blot analyses indicate that mtNOS is restricted to the umbrella cells, which scanning electron micrographs show are selectively damaged by radiation. Simultaneous microsensor measurements demonstrate that radiation increases NO and peroxynitrite (ONOO-) production in these cells, which can be prevented by transfection with manganese superoxide dismutase (MnSOD) or instillation of NOS antagonists during irradiation or irradiation of bladders devoid of mtNOS. These studies demonstrate that mtNOS is in the cardiomyocytes and urothelial cells, that it is derived from the neuronal isoform, and that it can be either protective or detrimental.  相似文献   

10.
Uncoupling of nitric-oxide synthase (NOS) by deficiency of the substrate L-arginine or the cofactor (6R)-5,6,7,8-tetrahydrobiopterin (BH4) is known to generate the reactive oxygen species H2O2 and superoxide. Discrimination between these two compounds is usually achieved by spin trapping of superoxide. We measured superoxide formation by uncoupled rat neuronal NOS, which contained one equivalent of tightly bound BH4 per dimer, using 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) as a spin trap. As expected, the Ca2+-stimulated enzyme exhibited reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity that was accompanied by generation of superoxide and H2O2 in the absence of added L-arginine and BH4. Addition of BH4 (10 microM) did not significantly affect the rate of H2O2 formation but almost completely inhibited the apparent formation of superoxide, suggesting direct formation of H2O2. Although L-arginine (0.1 mM) increased the rate of NADPH oxidation about two-fold, the substrate largely attenuated apparent formation of both superoxide and H2O2, indicating that the spin trap did not efficiently outcompete the reaction between NO and superoxide. The efficiency of DEPMPO to scavenge superoxide in the presence of NO was studied by measuring free NO with a Clark-type electrode under conditions of NO/superoxide cogeneration. Neuronal NOS half-saturated with BH4 and the donor compound 3-morpholinosydnonimine (SIN-1) were used as enzymatic and nonenzymatic sources of NO/superoxide, respectively. Neither of the two systems gave rise to considerable NO signals in the presence of 50-100 mM DEPMPO, and even at 400 mM the spin trap uncovered less than 50% of the NO release that was detectable in the presence of 5000 U/ml superoxide dismutase. These results indicate that DEPMPO and all other currently available superoxide spin traps do not efficiently outcompete the reaction with NO. In addition, the similar behavior of nNOS and SIN-1 provides further evidence for NO as initial product of the NOS reaction.  相似文献   

11.
Cortical nitric oxide (NO) production increases during hypoxia/ischemia in the immature brain and is associated with both neurotoxicity and mitochondrial dysfunction. Mitochondrial redistribution within the cell is critical to normal neuronal function, however, the effects of hypoxia on mitochondrial dynamics are not known. This study tested the hypothesis that hypoxia impairs mitochondrial movement via NO-mediated pathways. Fluorescently labeled mitochondria were studied using time-lapse digital video microscopy in cultured cortical neurons exposed either to hypoxia/re-oxygenation or to diethyleneamine/nitric oxide adduct, DETA-NO (100-500 microm). Two NO synthase inhibitors, were used to determine NO specificity. Mitochondrial mean velocity, the percentage of movement (i.e. the time spent moving) and mitochondrial morphology were analyzed. Exposure to hypoxia reduced mitochondrial movement to 10.4 +/- 1.3% at 0 h and 7.4 +/- 1.7% at 1 h of re-oxygenation, versus 25.6 +/- 1.4% in controls (p < 0.05). Mean mitochondrial velocity (microm s(-1)) decreased from 0.374 +/- 0.01 in controls to 0.146 +/- 0.01 at 0 h and 0.177 +/- 0.02 at 1 h of re-oxygenation (p < 0.001). Exposure to DETA-NO resulted in a significant decrease in mean mitochondrial velocity at all tested time points. Treatment with NG-nitro-L-arginine methyl ester (L-NAME) prevented the hypoxia-induced decrease in mitochondrial movement at 0 h (30.1 +/- 1.6%) and at 1 h (26.1 +/- 9%) of re-oxygenation. Exposure to either hypoxia/re-oxygenation or NO also resulted in the rapid decrease in mitochondrial size. Both hypoxia and NO exposure result in impaired mitochondrial movement and morphology in cultured cortical neurons. As the effect of hypoxia on mitochondrial movement and morphology can be partially prevented by a nitric oxide synthase (NOS) inhibitor, these data suggest that an NO-mediated pathway is at least partially involved.  相似文献   

12.
13.
14.
Decreased levels of tetrahydrobiopterin (BH4), an absolute cofactor for nitric oxide synthase (NOS), lead to uncoupling of NOS into a superoxide v. nitric oxide producing enzyme, and it is this uncoupling that links it to the development of vascular disease. However, the effects of in vivo deficiency of BH4 on neointimal formation after vascular injury have not been previously investigated. Hph-1 mice, which display 90% deficiency in guanine triphosphate cyclohydrolase I, the rate limiting enzyme in BH4 synthesis, were used. Hph-1 and wild-type mice, treated with either vehicle or BH4 (n = 15 per group), were subjected to wire-induced femoral artery injury, and NOS expression and activity, inflammation, cell proliferation, superoxide production, and neointimal formation were assessed. The major form of NOS expressed over vessel wall after vascular injury was endothelial NOS. Hph-1 mice exhibited lower NOS activity (2.8 +/- 0.3 vs. 4.5 +/- 0.4 pmol/min/mg protein, P < 0.01), and higher aortic superoxide content (5.2 +/- 2.0 x 10(5) cpm vs. 1.6 +/- 0.7 x 10(5) cpm, P < 0.01) compared with wild-type controls, indicating uncoupling of NOS. Treatment of hph-1 mice with BH4 significantly increased NOS activity (from 2.8 +/- 0.3 to 4.1 +/- 0.4 pmol.min(-1).mg protein(-1), P < 0.05), and attenuated superoxide production (from 5.2 +/- 2.0 x 10(5) cpm to 0.8 +/- 0.7 x 10(5) cpm, P < 0.05). Hph-1 mice also had higher inflammatory reactions and more cell proliferation after vascular injury. Furthermore, hph-1 mice responded by a marked increase in neointimal formation at 4 wk after vascular injury, compared with wild-type controls (intima:media ratio: 4.5 +/- 0.5 vs. wild-type 0.7 +/- 0.1, P < 0.001). Treatment of hph-1 mice with BH4 prevented vascular injury-induced increase in neointimal formation (intima:media ratio: 1.4 +/- 0.1 vs. hph-1, P < 0.001). Treatment had no effect on wild-type controls. In summary, we describe, for the first time, that in vivo BH4 deficiency facilitates neointimal formation after vascular injury. Modulation of BH4 bioavailability is an important therapeutic target for restenosis.  相似文献   

15.
Metalloporphyrins improve the survival of Sod2-deficient neurons   总被引:1,自引:0,他引:1  
Patel MN 《Aging cell》2003,2(4):219-222
The objective of this study was to determine whether metalloporphyrin catalytic antioxidants influence the survival of neuronal cultures in an in vitro model of age-related mitochondrial oxidative stress. Neuronal cultures were prepared from cerebral cortices of manganese superoxide dismutase (MnSOD or Sod2) knockout (homozygous -/-, heterozygous -/+ or wild-type +/+) mice. The ability of catalytic antioxidants, manganese tetrakis-(4-benzoic acid) porphyrin (MnTBAP) and manganese tetrakis-(N-ethyl-2-pyridyl) porphyrin (MnTE-2-PyP) to influence the survival of cultured cerebrocortical neurones from Sod2-replete (+/+) and Sod2-deficient (+/- or -/-) mice was assessed. Sod2-/- cultures showed accelerated cell death in serum-free conditions when grown in ambient oxygen. MnTBAP and MnTE-2-PyP delayed the death of Sod2-/- cultures and improved the survival of Sod2+/+ and Sod2+/- cultures in serum-free conditions. The results suggest that metalloporphyrin antioxidants can delay neuronal death resulting specifically from increased mitochondrial oxidative stress. Furthermore, Sod2-deficient neuronal cultures provide a simple model system to screen the biological efficacy of mitochondrial antioxidants.  相似文献   

16.
Berka V  Wang LH  Tsai AL 《Biochemistry》2008,47(1):405-420
Fully coupled nitric oxide synthase (NOS) catalyzes formation of nitric oxide (NO), l-citrulline, NADP+, and water from l-arginine, NADPH, and oxygen. Uncoupled or partially coupled NOS catalyzes the synthesis of reactive oxygen species such as superoxide, hydrogen peroxide, and peroxynitrite, depending on the availability of cofactor tetrahydrobiopterin (BH4) and l-arginine during catalysis. We identified three distinct oxygen-induced radical intermediates in the ferrous endothelial NOS oxygenase domain (eNOSox) with or without BH4 and/or l-arginine [Berka, V., Wu, G., Yeh, H. C., Palmer, G., and Tsai, A.-L. (2004) J. Biol. Chem. 279, 32243-32251]. The effects of BH4 and l-arginine on the oxygen-induced radical intermediates in the isolated neuronal NOS oxygenase domain (nNOSox) have been similarly investigated by single-turnover stopped-flow and rapid-freeze quench EPR kinetic measurements in the presence or absence of dithiothreitol (DTT). Like for eNOSox, we found different radical intermediates in the reaction of ferrous nNOSox with oxygen. (1) nNOSox (without BH4 or l-Arg) produces superoxide in the presence or absence of DTT. (2) nNOSox (with BH4 and l-Arg) yields a typical BH4 radical in a manner independent of DTT. (3) nNOSox (with BH4 and without l-Arg) yields a new radical. Without DTT, EPR showed a mixture of superoxide and biopterin radicals. With DTT, a new approximately 75 G wide radical EPR was observed, different from the radical formed by eNOSox. (4) The presence of only l-arginine in nNOSox (without BH4 but with l-Arg) caused conversion of approximately 70% of superoxide radical to a novel radical, explaining how l-arginine decreases the level of superoxide production in nNOSox (without BH4 but with l-Arg). The regulatory role of l-arginine in nNOS is thus very different from that in eNOS where substrate was only to decrease the rate of formation of superoxide but not the total amount of radical. The role of DTT is also different. DTT prevents oxidation of BH4 in both isoforms, but in nNOS, DTT also inhibits oxidation of two key cysteines in nNOSox to prevent the loss of substrate binding. This new role of thiol found only for nNOS may be significant in neurodegenerative diseases.  相似文献   

17.
Oxidative stress is widely associated with disease and aging but the underlying mechanisms are incompletely understood. Here we show that the premature mortality of Drosophila deficient in superoxide scavengers, superoxide dismutase (SOD) 1 or SOD2, is rescued by chronic hypoxia. Strikingly, switching moribund SOD2-deficient adults from normoxia into hypoxia abruptly arrests their impending premature mortality and endows the survivors with a near-normal life span. This finding challenges the notion that irreversible oxidative damage initiated by unscavenged superoxide in the mitochondrial matrix underpins the premature mortality of SOD2-deficient adults. In contrast, switching moribund SOD1-deficient flies from normoxia into hypoxia fails to alter their mortality trajectory, suggesting that the deleterious effects of unscavenged superoxide in the cytoplasm/intermembrane space compartment are cumulative and largely irreversible. We conclude that cellular responses to superoxide-initiated oxidative stress are mediated through different compartment-specific pathways. Elucidating these pathways should provide novel insights into how aerobic cells manage oxidative stress in health, aging, and disease.  相似文献   

18.
Tetrahydrobiopterin (BH4) is a required cofactor for the synthesis of NO by NOS. Bioavailability of BH4 is a critical factor in regulating the balance between NO and superoxide production by endothelial NOS (eNOS coupling). Crystal structures of the mouse inducible NOS oxygenase domain reveal a homologous BH4-binding site located in the dimer interface and a conserved tryptophan residue that engages in hydrogen bonding or aromatic stacking interactions with the BH4 ring. The role of this residue in eNOS coupling remains unexplored. We overexpressed human eNOS W447A and W447F mutants in novel cell lines with tetracycline-regulated expression of human GTP cyclohydrolase I, the rate-limiting enzyme in BH4 synthesis, to determine the importance of BH4 and Trp-447 in eNOS uncoupling. NO production was abolished in eNOS-W447A cells and diminished in cells expressing W447F, despite high BH4 levels. eNOS-derived superoxide production was significantly elevated in W447A and W447F versus wild-type eNOS, and this was sufficient to oxidize BH4 to 7,8-dihydrobiopterin. In uncoupled, BH4-deficient cells, the deleterious effects of W447A mutation were greatly exacerbated, resulting in further attenuation of NO and greatly increased superoxide production. eNOS dimerization was attenuated in W447A eNOS cells and further reduced in BH4-deficient cells, as demonstrated using a novel split Renilla luciferase biosensor. Reduction of cellular BH4 levels resulted in a switch from an eNOS dimer to an eNOS monomer. These data reveal a key role for Trp-447 in determining NO versus superoxide production by eNOS, by effects on BH4-dependent catalysis, and by modulating eNOS dimer formation.  相似文献   

19.
Tetrahydrobiopterin (BH4) serves as a critical co-factor for the endothelial nitric-oxide synthase (eNOS). A deficiency of BH4 results in eNOS uncoupling, which is associated with increased superoxide and decreased NO* production. BH4 has been suggested to be a target for oxidation by peroxynitrite (ONOO-), and ascorbate has been shown to preserve BH4 levels and enhance endothelial NO* production; however, the mechanisms underlying these processes remain poorly defined. To gain further insight into these interactions, the reaction of ONOO- with BH4 was studied using electron spin resonance and the spin probe 1-hydroxy-3-carboxy-2,2,5-tetramethyl-pyrrolidine. ONOO- reacted with BH4 6-10 times faster than with ascorbate or thiols. The immediate product of the reaction between ONOO- and BH4 was the trihydrobiopterin radical (BH3.), which was reduced back to BH4 by ascorbate, whereas thiols were not efficient in recycling of BH4. Uncoupling of eNOS caused by peroxynitrite was investigated in cultured bovine aortic endothelial cells (BAECs) by measuring superoxide and NO* using spin probe 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine and the NO*-spin trap iron-diethyldithiocarbamate. Bolus ONOO-, the ONOO- donor 3-morpholinosydnonimine, and an inhibitor of BH4 synthesis (2,4-diamino-6-hydroxypyrimidine) uncoupled eNOS, increasing superoxide and decreasing NO* production. Exogenous BH4 supplementation restored endothelial NO* production. Treatment of BAECs with both BH4 and ascorbate prior to ONOO- prevented uncoupling of eNOS by ONOO-. This study demonstrates that endothelial BH4 is a crucial target for oxidation by ONOO- and that the BH4 reaction rate constant exceeds those of thiols or ascorbate. We confirmed that ONOO- uncouples eNOS by oxidation of tetrahydrobiopterin and that ascorbate does not fully protect BH4 from oxidation but recycles BH3. radical back to BH4.  相似文献   

20.
J. Neurochem. (2012) 122, 1211-1218. ABSTRACT: In this study, we used the GTP cyclohydrolase I-deficient mice, i.e., hyperphenylalaninemic (hph-1) mice, to test the hypothesis that the loss of tetrahydrobiopterin (BH(4) ) in cerebral microvessels causes endothelial nitric oxide synthase (eNOS) uncoupling, resulting in increased superoxide anion production and inhibition of endothelial nitric oxide signaling. Both homozygous mutant (hph-1(-/-) ) and heterozygous mutant (hph-1(+/-) mice) demonstrated reduction in GTP cyclohydrolase I activity and reduced bioavailability of BH(4) . In the cerebral microvessels of hph-1(+/-) and hph-1(-/-) mice, increased superoxide anion production was inhibited by supplementation of BH(4) or NOS inhibitor- L- N(G) -nitro arginine-methyl ester, indicative of eNOS uncoupling. Expression of 3-nitrotyrosine was significantly increased, whereas NO production and cGMP levels were significantly reduced. Expressions of antioxidant enzymes namely copper and zinc superoxide dismutase, manganese superoxide dismutase, and catalase were not affected by uncoupling of eNOS. Reduced levels of BH(4) , increased superoxide anion production, as well as inhibition of NO signaling were not different between the microvessels of male and female mice. The results of our study are the first to demonstrate that, regardless of gender, reduced BH(4) bioavailability causes eNOS uncoupling, increases superoxide anion production, inhibits eNOS/cGMP signaling, and imposes significant oxidative stress in the cerebral microvasculature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号