首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Unstimulated human T lymphocytes are more readily killed by ultraviolet light (UV) than are B lymphocytes. The greater UV sensitivity of T cells can be explained by a less efficient process of excision repair; this was measured by following the restitution of DNA supercoiling in preparations of nucleoids obtained from purified and irradiated B and T lymphocytes after various periods of incubation. Differences in the sedimentation behaviour of irradiated B and T nucleoids in sucrose gradients are not attributable to differences in the degree of DNA supercoiling. The return to normal supercoiling for both B and T nucleoids is inhibited by hydroxyurea.  相似文献   

2.
Inhibitors of (a) DNA topoisomerases (novobiocin and nalidixic acid) and of (b) eukaryotic DNA polymerases α (cytosine arabinoside) and β (dideoxythymidine) blocked different steps of DNA repair, demonstrated by the effects of the inhibitors on the relaxation of supercoiled DNA nucleoids following treatment of human cell cultures with ultraviolet light (1–3 J/m2) or MNNG (5 or 20 μM) and the subsequent restoration of the supercoiled nucleoids during repair incubation. Changes in the supercoiling of nucleoid DNA were assayed by analysis of their sedimentation profiles in 15–30% neutral sucrose gradients. Inhibition of repair by novobiocin was partially reversible; upon its removal from the culture medium, the nucleoid DNA of repairing cells became relaxed. The DNA polymerase inhibitors allowed the initial relaxation of DNA after treatment of the cells with ultraviolet or MNNG but delayed the regeneration of rapidly-sedimenting (supercoiled) nucleoid DNA for 2–4 h. Dideoxythymidine (1 mM) was more effective than cytosine arabinoside (1 μM) in producing this delay, but neither inhibitor by itself blocked repair permanently. Incubation of ultraviolet-irradiated cells with 1 μM cytosine arabinoside plus 1 mM dideoxythymidine blocked the completion of repair for 24 h, whereas incubation with 10 μM cytosine arabinoside or 5 mM dideoxythymidine produced only temporary repair delays of 2–4 h. Thus, it is likely that the two DNA polymerase inhibitors act upon separate targets and that both targets are involved in repair. It is concluded from these and from previous studies that (1) the DNA repair-sensitive target of novobiocin and nalidixic acid in vivo is not a DNA polymerase, but, rather, a DNA topoisomerase; (2) this target affects an initial step of DNA repair leading to the relaxation of supercoiled DNA; (3) the DNA polymerization step of repair may involve both α- and β-type DNA polymerases; and (4) in repair, one type of DNA polymerase may substitute for another.  相似文献   

3.
Summary Human quiescent lymphocytes were lysed onto neutral sucrose gradients in order to sediment subsequently the nuclear DNA released within nucleoids. The position of nucleoids in the centrifuge tubes was detected fluorometrically by using the dye, ethidium bromide, and the height of the fluorescent peak was taken as a measure of DNA content. X-irradiation of lymphocytes, before their lysis, altered the DNA content of nucleoids and their sedimantation rate in accord with the view that(1) nuclear DNA is attached along its length at distance corresponding to 1.7 × 1010 g/mol, amd that(2) X-ray-induces double-strand breakage releases DNA fragments at random. Incubation at 37° C of irradiated lymphocytes restored the amount of attached DNA as it would be expected from an intracellular repair process for DNA double-strand breaks.  相似文献   

4.
D-ribose inhibits DNA repair synthesis in human lymphocytes   总被引:2,自引:0,他引:2  
D-ribose is cytotoxic for quiescent human lymphocytes and severely inhibits their PHA-induced proliferation at concentrations (25-50 mM) at which other simple sugars are ineffective. In order to explain these effects, DNA repair synthesis was evaluated in PHA-stimulated human lymphocytes treated with hydroxyurea and irradiated. D-ribose, in contrast to other reducing sugars, did not induce repair synthesis and therefore did not apparently damage DNA in a direct way, although it markedly inhibited gamma ray-induced repair. Taking into account that lymphocytes must rejoin physiologically-formed DNA strand breaks in order to enter the cell cycle, we suggest that D-ribose exerts its cytotoxic activity by interfering with metabolic pathways critical for the repair of DNA breaks.  相似文献   

5.
The comet assay for DNA damage and repair   总被引:9,自引:0,他引:9  
The comet assay (single-cell gel electrophoresis) is a simple method for measuring deoxyribonucleic acid (DNA) strand breaks in eukaryotic cells. Cells embedded in agarose on a microscope slide are lysed with detergent and high salt to form nucleoids containing supercoiled loops of DNA linked to the nuclear matrix. Electrophoresis at high pH results in structures resembling comets, observed by fluorescence microscopy; the intensity of the comet tail relative to the head reflects the number of DNA breaks. The likely basis for this is that loops containing a break lose their supercoiling and become free to extend toward the anode. The assay has applications in testing novel chemicals for genotoxicity, monitoring environmental contamination with genotoxins, human biomonitoring and molecular epidemiology, and fundamental research in DNA damage and repair. The sensitivity and specificity of the assay are greatly enhanced if the nucleoids are incubated with bacterial repair endonucleases that recognize specific kinds of damage in the DNA and convert lesions to DNA breaks, increasing the amount of DNA in the comet tail. DNA repair can be monitored by incubating cells after treatment with damaging agent and measuring the damage remaining at intervals. Alternatively, the repair activity in a cell extract can be measured by incubating it with nucleoids containing specific damage.  相似文献   

6.
Cultured mammalian cells incur damage to their DNA when exposed to ultraviolet light or adduct-producing mutagens such as 4-nitroquinoline-1-oxide (4NQO). At least two processes are important in repair of such damage: post-replication repair and excision repair. Many researchers have reported that caffeine inhibits the former process, which occurs in connection with semiconservative DNA replication, especially in rodent cell lines such as mouse lymphoma or Chinese hamster. Excision repair is not generally considered caffeine-sensitive, although the data are somewhat conflicting because some studies had used rodent cells, which show little or no excision repair, or human cells in which alternate repair processes may have been operating.Human peripherhal blood lymphocytes from healthy donors were treated with UV light or 4NQO in order to produce pyrimidine dimers or adducts. Caffeine at concentrations of 0.75–3.0 mM was included in some cultures. The cells treated with caffeine were incubated for 90 min prior to mutagen treatment and for the entire period thereafter until cell harvests. [3H]Thymidine was added and the uptake quantitated as a measure of DNA repair. DNA replication was inhibited by hydroxyurea, so that only excision repair was measured by this method. Separate plates of cells not exposed to mutagens exhibited negligible or low thymidine uptakes.Following harvest, the cells were lysed and the DNA extracted. The DNA released was measured spectrophotometrically and then placed into liquid-scintillation counter (LSC) vials for measurement of incorporated radioactivity. Resulting cpm/μ DNA were compared for cells with and without caffeine. Lymphocytes from patients with systemic lupus erythematosus (SLE), who previously had demonstrated reduced levels of excision repair under these conditions, were also tested with caffeine. Caffeine did not inhibit repair by normal lymphocytes and the reduced repair seen in the SLE patients was not further reduced in its presence.In a series of pulse-chase experiments, some cells were treated with 4NQO and allowed to incubate with [3H]thymidine for 3 h and were harvested at the end of this period, while others were given a 13-h chase i n cold thymidine before harvest. The cpm/μg DNA for both groups were virtually identical, both in the presence and absence of 2.0 mM caffeine.  相似文献   

7.
A simplified and shortened procedure has been developed for the determination of repair replication of DNA in cultured mammalian cells. The procedure, using the bromodeoxyuridine density label and a radio-isotopic label has been applied to normal diploid human cells (WI38) and to their SV40 transformants (VA13). After incubation with the repair label the cells are lysed and digested for two hours at 50 degrees C with proteinase K. This digest can then be immediately subjected to alkaline cesium chloride density gradient centrifugation with no need for DNA extraction. Hydroxyurea is used to reduce the level of semi-conservative synthesis that a quantitative determination of repair replication can be accomplished by a single centrifugation. The method is not affected by variation in the effectiveness of the inhibitor although a small amount of semi-conservative synthesis normally occurs in the presence of the drug. The time course of repair replication in WI38 cells is unaffected by the drug. The apparent amount of repair synthesis in ultraviolet irradiated cells is increased 25 to 40% in the presence of hydroxyurea when thymidine is used as tracer. Under certain conditions in which the level of semiconservative synthesis is low (e.g., contact inhibited cells, high ultraviolet doses) the use of hydroxyurea is unnecessary.  相似文献   

8.
《The Journal of cell biology》1984,99(4):1275-1281
The regulation of DNA repair during serum stimulation of quiescent cells was examined in normal human cells, in fibroblasts from three xeroderma pigmentosum complementation groups (A, C, and D), in xeroderma pigmentosum variant cells, and in ataxia telangiectasia cells. The regulation of nucleotide excision repair was examined by exposing cells to ultraviolet irradiation at discrete intervals after cell stimulation. Similarly, base excision repair was quantitated after exposure to methylmethane sulfonate. WI-38 normal human diploid fibroblasts, xeroderma pigmentosum variant cells, as well as ataxia telangiectasia cells enhanced their capacity for both nucleotide excision repair and for base excision repair prior to their enhancement of DNA synthesis. Further, in each cell strain, the base excision repair enzyme uracil DNA glycosylase was increased prior to the induction of DNA polymerase using the identical cells to quantitate each activity. In contrast, each of the three xeroderma complementation groups that were examined failed to increase their capacity for nucleotide excision repair above basal levels at any interval examined. This result was observed using either unscheduled DNA synthesis in the presence of 10 mM hydroxyurea or using repair replication in the absence of hydroxyurea to quantitate DNA repair. However, each of the three complementation groups normally regulated the enhancement of base excision repair after methylmethane sulfonate exposure and each induced the uracil DNA glycosylase prior to DNA synthesis. These results suggest that there may be a relationship between the sensitivity of xeroderma pigmentosum cells from each complementation group to specific DNA damaging agents and their inability to regulate nucleotide excision repair during cell stimulation.  相似文献   

9.
We have studied the effect of novobiocin treatment on radiation-induced damage and its repair in higher-order DNA structure in two mouse leukemia cell lines differing in their radiosensitivity, L5178Y-R (LY-R) and L5178Y-S (LY-S). We used the fluorescent halo technique to measure alterations in the superhelical density and the topological constraints of DNA in LY-R and LY-S nucleoids. The results for untreated cells show that both cell lines reached maximal DNA unwinding at the same concentration of propidium iodide (PI), whereas LY-S nucleoids were less efficient in their ability to rewind their DNA. The loop size did not differ significantly between the cell lines. Incubation of LY-R and LY-S cells with novobiocin at a concentration which does not influence survival (0.1 mM for 45 min), but inhibits DNA synthesis in LY-R cells (by 28%) to a greater extent than in LY-S cells (by 10%), also causes more DNA unwinding in LY-R nucleoids than in LY-S nucleoids. However, a decreased superhelical density was observed in nucleoids from both cell lines. Novobiocin applied before, and present during, irradiation prevents radiation-induced alterations in DNA supercoiling more efficiently in LY-R than in LY-S cells. The presence of novobiocin during the repair period increased DNA rewinding to levels not significantly different from control values in nucleoids from both cell lines.  相似文献   

10.
Sedimentation of nucleoids through neutral sucrose density gradients has shown that nucleoids isolated from phytohemagglutinin (PHA)-stimulated human peripheral blood lymphocytes (PBL) sediment faster than nucleoids derived from quiescent lymphocytes, which was attributed to rejoining of DNA single-strand breaks (SSB) present in the resting cells (A.P. Johnstone, and G.T. Williams (1982) Nature (London) 300, 368). We isolated PBL from donors and determined the amount of SSB in nonradiolabeled, untreated resting and PHA-stimulated cells by applying the alkaline filter elution technique. Calibration was based on dose-dependent induction of SSB by 60Co-gamma-radiation. Quiescent cells did not contain a sizable amount of SSB. Mitogen-stimulated cells showed equally low amounts of SSB per cell. The present study indicates that the interpretation of the results obtained with the nucleoid sedimentation technique concerning the supposed rejoining of SSB in PHA-stimulated human lymphocytes is incorrect. Other, equally sensitive, techniques such as alkaline filter elution appear to be preferable for studies on DNA damage and repair.  相似文献   

11.
Summary Irradiation of dry, mature pollen from Petunia hybrida with near-ultraviolet light from an erythemal-sunlamp gave rise to a repair-like, unscheduled DNA synthesis during the early stages of in vitro germination. Like that brought about by farultraviolet light from a germicidal lamp, this DNA synthesis is enhanced by hydroxyurea added to the germination medium, and reduced by photoreactivating light given after ultraviolet irradiation and before germination begins. It is concluded that pollen, often receiving considerable exposure to sunlight, has, in addition to the protection afforded by the ultraviolet filtering effect of yellow pigments, also the capacity to repair ultraviolet produced changes in DNA, by both photoreactivation and dark repair processes.Because mature Petunia pollen is arrested at the G2 stage of the cell cycle, germinating pollen provides us with a highly synchronous plant tissue with a very low background of DNA replicative synthesis suitable for sensitive measurement of DNA repair synthesis. Thus we have shown that 4-nitroquinoline-1-oxide, at concentrations greater than 0.001 mM, gives rise to an unscheduled DNA synthesis which is enhanced by hydroxyurea. Like that induced by ultraviolet radiation, the chemical mutagen brings about DNA repair only during the early stages of pollen germination, and further it has been possible to show that repair ceases at about the time that generative cell division and pollen tube elongation begins.Boron addition enhances both ultraviolet and 4-nitroquinoline-1-oxide induced repair synthesis. By delaying the chemical mutagen initiation of repair until after germination has begun, we have been able to show that boron is most beneficial during the first hour of germination. It is postulated that this is achieved through an as yet unknown effect of boron on the supply of precursors before pollen cell metabolism is fully committed to pollen tube synthesis later in the germination period.  相似文献   

12.
DNA damage and repair provoked by ethidium azide (EA) photoaffinity labeling in mouse leukemia cells was studied by measuring sedimentation properties of nucleoids in neutral sucrose gradients, and it was found that the strand opening step was faster than that which followed damage of cells by ultraviolet (UV) light. The two insults were compared at levels of damage which gave the same overall rates of repair synthesis in intact cells and which required the same length of time to complete repair, as judged by the restoration of supercoiling of the isolated nucleoids. In the case of UV, single-strand breaks in DNA were detectable at 30 min, maximum at 2 h, and the superhelical properties restored at 21 h. With photoaffinity labeling, single-strand breaks were prominent immediately, even when photolabeling of cells was done on ice, but restoration of DNA supercoiling still required 21 h. Photolabeling of isolated nucleoids or isolated viral DNA with EA failed to introduce DNA strand breaks. However, it was discovered that photoaffinity labeling of DNA with EA resulted in alkali labile sites shown by single strand breaks produced on alkaline sucrose sedimentation or by alkali exposure followed by sedimentation on neutral formamide gradients. These results suggest that the drug attachment sites should be identifiable by the location of such single strand breaks.  相似文献   

13.
Aphidicolin inhibits repair of DNA in UV-irradiated human fibroblasts   总被引:3,自引:0,他引:3  
Aphidicolin, a specific inhibitor of DNA polymerase α, is shown to inhibit DNA repair in human diploid fibroblasts. Although aphidicolin has no apparent effect on the DNA of unirradiated cells, it causes a large number of strand breaks to accumulate in UV-irradiated cellular DNA. The number of breaks is the same as the number observed following a similar dose of ultraviolet light when cells are treated with arabinofuranosyl cytosine (araC) and hydroxyurea (HU), known inhibitors of repair. Moreover, two-dimensional paper chromatography shows that aphidicolin completely blocks removal of pyrimidine dimers. These observations are discussed in light of the proposed roles of DNA polymerases α β in DNA replication and repair and the action of aphidicolin on polymerase α.  相似文献   

14.
The in vivo frequency of mutants resulting from mutation at the hprt locus in human T-lymphocytes was determined with a cloning assay. T-lymphocytes were obtained from 14 individuals diagnosed with schizophrenia and 5 controls. No significant difference in mutant frequency was observed between the 2 groups. In addition, DNA-repair capacity was measured with the unscheduled DNA synthesis technique in lymphocytes from 7 individuals diagnosed with schizophrenia and 7 controls. Repair capacity was determined following treatment with MMS, MNNG, and 20 J/m2 ultraviolet light. No significant differences in DNA repair were observed between the patient and control groups in response to any of the 3 DNA-damaging agents. These results argue against differences between normal and schizophrenic individuals with respect to in vivo mutant frequency or their capacity to repair DNA lesions induced by MMS, MNNG, or ultraviolet radiation.  相似文献   

15.
We have measured deoxyribonucleotide pool sizes in different cell types: normal human, transformed human (HeLa), and the permanent hamster line CHO-K1. The range of sizes of the four DNA precursor pools in CHO cells is far greater than in human cells. It is a general rule that hydroxyurea causes rapid depletion of pools (except for dTTP) until the pool present in smallest amount is exhausted; this suggests a tight coupling of the pools to DNA replication (the presumed main cause of the depletion). The effect of hydroxyurea on DNA repair after ultraviolet irradiation (namely, a relatively small accumulation of incomplete repair sites blocked at the resynthesis stage) is probably accounted for by the reduced availability of DNA precursors. However, depletion of the dCTP pool is not an adequate explanation for the observed enhancement by hydroxyurea of the inhibitory effect of cytosine arabinoside; we suggest other possible modes of action. Ultraviolet irradiation has only small effects on the levels of deoxyribonucleotides.  相似文献   

16.
The potency of several metal compounds in causing lesions in DNA either directly or by exposure of intact cultured cells has been examined using the neutral conditions of nucleoid gradient sedimentation. HgCl2 was clearly the most potent inducer of single-strand breakage when added to isolated nucleoids or when nucleoids were prepared from cells treated with this compound. CaCrO4 , however, caused DNA-strand breaks in nucleoids isolated from cells treated with this agent but did not induce DNA strand breaks when added directly to nucleoids. Although less potent than HgCl2, NiCl2 also caused significant single strand breakage in isolated nucleoids or in nucleoids prepared from cells treated with this metal. Since strand breakage of DNA in intact cells may occur secondary to activation of DNA-dependent nucleases during repair replication, CsCl gradient density sedimentation was utilized to examine whether repair processes were induced by exposure of cells to NiCl2, HgCl2 and CaCrO4 . CaCrO4 and NiCl2 induced substantial DNA-repair activity at concentrations and exposure times where DNA lesions could not be detected whereas HgCl2 induced a 10-fold lower level of DNA-repair activity compared to CaCrO4 at optimal concentrations which again were below the concentrations of this metal that produced measurable DNA lesions. Both the induction of DNA-repair activity and DNA-strand breakage by these metals was concentration- and time-dependent. These results demonstrate some unique aspects of the interaction of HgCl2, NiCl2 and CaCrO4 with the DNA of intact cells and point to the possible important correlation of induction of DNA repair to carcinogenesis since nickel and chromate have clearly been implicated as carcinogens and induce considerable repair whereas HgCl2 is not considered a carcinogen and induces the least DNA repair despite its potency in producing DNA lesions.  相似文献   

17.
Opossum lymphocytes were used for studies of DNA repair. Several compounds were assessed for their capacity to induce repair. Specially interesting was the fact that some intercalators (proflavin, ICR-170, quinacrine and acridine orange) did induce repair, as determined by [3H]thymidine incorporation in the presence of hydroxyurea, CsCl density gradient centrifugation of bromodeoxyuridine-containing DNA and autoradiographically detected unscheduled DNA synthesis.A comparison of the inhibitory effect of several chemicals on DNA replication and DNA repair was also carried out. In this study, repair synthesis was induced by UV irradiation. For most of the compounds, the concentration necessary to inhibit 50% of DNA replication or DNA repair was similar. The most notable exception was cycloheximide which inhibited replication much more effectively than repair. None of the compounds used in this study was found to specifically inhibit repair synthesis.Inhibition of DNA replication and DNA repair was a general effect exhibited by the compounds which bind to DNA. However, only some of these compounds were able to induce repair. As most of these compounds were mutagens it was concluded that the inhibitory effect could be more relevant to mutagenesis that the repair-induction effect.  相似文献   

18.
Conformational constraints in nuclear DNA.   总被引:21,自引:0,他引:21  
We have investigated DNA superstructure in a wide range of nuclei of higher cells by gently lysing cells to release structures that resemble nuclei but are depleted of nuclear proteins. The sedimentation properties of these structures, which we call nucleoids, have been examined in sucrose gradients containing the intercalating agent, ethidium. The sedimentation rate of nucleoids derived from the growing cells of mammals, birds, amphibians and insects varies in the manner characteristic of circular and superhelical molecules of DNA. These characteristic changes in sedimentation rate are abolished by irradiating the nucleoids with low doses of gamma-rays, a procedure known to introduce single-strand scissions into DNA. We have also investigated by similar means DNA superstructure in nucleoids derived from a variety of different chick cells. Nucleoids derived from adult hen erythrocytes differ from the other nucleoids studied in that their sedimentation rate does not vary in the manner characteristic of supercoiled DNA.  相似文献   

19.
We have developed a technique whereby 3-h pulses of arabinofuranosyl cytosine (ara-C) and hydroxyurea (HU) are used to analyze the kinetics of repair with time after ultraviolet irradiation in human fibroblasts. We demonstrate that this technique offers a significant improvement over existing repair assays in its ability to visualize between 57 and 100% of all sites undergoing repair in a given period of time. In addition, kinetic analyses of repair are more easily made and yield more information than techniques such as repair replication or unscheduled DNA synthesis. We have also examined the nature of the inhibition event by ara-C and have determined that repair breaks accumulate in the presence of ara-C and HU only up to a certain time beyond which no further breaks appear. The time needed to reach this saturation point depends on the number of sites undergoing repair during the treatment time. This observation is discussed with respect to a possible mechanism of excision repair inhibition by ara-C and HU.  相似文献   

20.
Structures retaining many of the morphological features of nuclei may be released by lysing HeLa cells in solutions containing non-ionic detergents and high concentrations of salt. These nucleoids contain few chromatin proteins. We have shown that the DNA of nucleoids is quasicircular and supercoiled by measure spectrofluorometrically the amount of the intercalating dye, ethidium, bound to unirradiated and gamma-irradiated nucleoids. Ethidium binds to nucleoids in the manner characteristic of the binding to superhelical DNA: at low concentrations more ethidium binds to unirradiated nucleoids than to their gamma-irradiated counterparts with broken DNA, and at higher concentrations less ethidium binds to the unirradiated nucleoids. The quasi-circles in nucleoids are 22 times less sensitive to gamma-irradiation than are circles of pure PM2 DNA: they must contain about 2.2 X 10(5) base pairs. The constraints that maintain the quasi-circularity of nucleoid DNA are very resistant to extremes of temperature and alkali; some remain under conditions in which the duplex is denatured. The constraints are destabilised by ethidium suggesting that they are stabilised by free energy of supercoiling. Proteolytic enzymes, but not ribonucleases, remove the constraints. Possible structures for the constraining mechanism are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号