首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This study investigates apoptotic effects of protein kinase C (PKC) delta and theta in neuroblastoma cells. 12-O-tetradecanoylphorbol-13-acetate induces apoptosis in SK-N-BE(2) neuroblastoma cells overexpressing PKCdelta or PKCtheta, but not PKC epsilon. The PKC inhibitor GF109203X does not suppress this apoptotic effect, suggesting that it is independent of the catalytic activity of PKC. The isolated catalytic domains of PKCdelta and PKCtheta or the regulatory domain (RD) of PKCtheta also induce apoptosis in neuroblastoma cells. The apoptotic responses are suppressed by caspase inhibition and by Bcl-2 overexpression. The PKCtheta RD induced apoptosis also in Jurkat cells. Colocalisation analysis revealed that the PKCtheta RD primarily localises to the Golgi complex. The C1b domain is required for this localisation and removal of the C1b domain results in a PKCtheta construct that does not induce apoptosis. This suggests that the PKCtheta RD has apoptotic activity and that Golgi localisation may be important for this effect.  相似文献   

3.
The segment C-terminal to the hydrophobic motif at the V5 domain of protein kinase C (PKC) is the least conserved both in length and in amino acid identity among all PKC isozymes. By generating serial truncation mutants followed by biochemical and functional analyses, we show here that the very C terminus of PKCalpha is critical in conferring the full catalytic competence to the kinase and for transducing signals in cells. Deletion of one C-terminal amino acid residue caused the loss of approximately 60% of the catalytic activity of the mutant PKCalpha, whereas deletion of 10 C-terminal amino acid residues abrogated the catalytic activity of PKCalpha in immune complex kinase assays. The PKCalpha C-terminal truncation mutants were found to lose their ability to activate mitogen-activated protein kinase, to rescue apoptosis induced by the inhibition of endogenous PKC in COS cells, and to augment melatonin-stimulated neurite outgrowth. Furthermore, molecular dynamics simulations revealed that the deletion of 1 or 10 C-terminal residues results in the deformation of the V5 domain and the ATP-binding pocket, respectively. Finally, PKCalpha immunoprecipitated using an antibody against its C terminus had only marginal catalytic activity compared with that of the PKCalpha immunoprecipitated by an antibody against its N terminus. Therefore, the very C-terminal tail of PKCalpha is a novel determinant of the catalytic activity of PKC and a promising target for selective modulation of PKCalpha function. Molecules that bind preferentially to the very C terminus of distinct PKC isozymes and suppress their catalytic activity may constitute a new class of selective inhibitors of PKC.  相似文献   

4.
The nonreceptor Bruton's tyrosine kinase (Btk) has been previously shown to associate physically and functionally with members of the protein kinase C (PKC) family of serine/threonine kinases in a variety of cell types. Here we show evidence for a novel interaction between Btk and PKCtheta; in platelets activated through the adhesion receptors GP Ib-V-IX and GP VI. Alboaggregin A, a snake venom component capable of activating both receptors in combination, leads to tyrosine phosphorylation of Btk downstream of Src family kinases. Inhibition of Btk by the selective antagonist LFM-A13 causes a reduction in calcium entry, although secretion of 5-hydroxytryptamine is potentiated. Btk is also phosphorylated on threonine residues in a PKC-dependent manner and associates with PKCtheta; upon platelet activation by either alboaggregin A or activation of GP Ib-V-IX alone by von Willebrand factor/ristocetin. PKCtheta; in turn becomes tyrosine-phosphorylated in a manner dependent upon Src family and Btk kinase activity. Inhibition of Btk activity by LFM-A13 leads to enhancement of PKCtheta; activity, whereas nonselective inhibition of PKC activity by bisindolylmaleimide I leads to reduction in Btk activity. We propose a reciprocal feedback interaction between Btk and PKCtheta; in platelets, in which PKCtheta; positively modulates activity of Btk, which in turn feeds back negatively upon PKCtheta;.  相似文献   

5.
6.
7.
Protein kinase C theta (PKCtheta), a member of the Ca(2+)-independent novel subfamily of PKCs, is required for T-cell receptor (TCR) signaling and IL2 production. PKCtheta-deficient mice have impaired Th2 responses in a murine ova-induced asthma model, while Th1 responses are normal. As an essential component of the TCR signaling complex, PKCtheta is a unique T-cell therapeutic target in the specific treatment of T-cell-mediated diseases. We report here the PKCtheta autophosphorylation characteristics and elucidation of the catalytic mechanism of the PKCtheta kinase domain using steady-state kinetics. Key phosphorylated residues of the active PKCtheta kinase domain expressed in Escherichia coli were characterized, and mutational analysis of the kinase domain was performed to establish the autophosphorylation and kinase activity relationships. Initial velocity, product inhibition, and dead-end inhibition studies provided assignments of the kinetic mechanism of PCKtheta(362)(-)(706) as ordered, wherein ATP binds kinase first and ADP is released last. Effects of solvent viscosity and ATPgammaS on PKCtheta catalysis demonstrated product release is partially rate limiting. Our studies provide important mechanistic insights into kinase activity and phosphorylation-mediated regulation of the novel PKC isoform, PKCtheta. These results should aid the design and discovery of PKCtheta antagonists as therapeutics for modulating T-cell-mediated immune and respiratory diseases.  相似文献   

8.
Phosphopeptide mapping identified a major autophosphorylation site, phospho (p)Thr-219, between the tandem C1 domains of the regulatory fragment in protein kinase C (PKC)theta. Confirmation of this identification was derived using (p)Thr-219 antisera that reacted with endogenous PKCtheta in primary CD3+ T cells after stimulation with phorbol ester, anti-CD3 or vanadate. The T219A mutation abrogated the capacity of PKCtheta to mediate NF-kappaB, NF-AT and interleukin-2 promoter transactivation, and reduced PKCtheta's ability in Jurkat T cells to phosphorylate endogenous cellular substrates. In particular, the T219A mutation impaired crosstalk of PKCtheta with Akt/PKBalpha in NF-kappaB activation. Yet, this novel (p)Thr-219 site did not affect catalytic activity or second-messenger lipid-binding activity in vitro. Instead, the T219A mutation prevented proper recruitment of PKCtheta in activated T cells. The PKCthetaT219A mutant defects were largely rescued by addition of a myristoylation signal to force its proper membrane localization. We conclude that autophosphorylation of PKCtheta at Thr-219 plays an important role in the correct targeting and cellular function of PKCtheta upon antigen receptor ligation.  相似文献   

9.
10.
11.
Protein kinase C (PKC)-activating phorbol esters protect T cells from Fas-induced apoptosis. However, the mechanism of this protective effect and the identity of the relevant PKC isoform(s) are poorly understood. Here, we show that PKCtheta plays a selective and important role in this protection. Fas triggering led to a selective caspase-3-dependent cleavage of the enzyme and proteasome-mediated degradation and inactivation of its catalytic fragment. These events preceded the onset of apoptosis. Pharmacological inhibition of PKCtheta promoted Fas-mediated apoptosis in three different types of T cells. Conversely, constitutively active PKCtheta (and, to a lesser degree, PKCepsilon) selectively protected T cells from Fas-induced apoptosis. We provide evidence that the distant Bcl-2 family member, BAD, is a PKCtheta substrate, is phosphorylated by TCR stimulation, and can mediate at least in part the anti-apoptotic effect of PKCtheta.  相似文献   

12.
13.
14.
Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated nuclear receptor regulating adipogenesis, glucose homeostasis and inflammatory responses. The activity of PPARγ is controlled by post-translational modifications including SUMOylation and phosphorylation that affects its biological and molecular functions. Several important aspects of PPARγ SUMOylation including SUMO isoform-specificity and the impact of ligand binding on SUMOylation remain unresolved or contradictory. Here, we present a comprehensive study of PPARγ1 SUMOylation. We show that PPARγ1 can be modified by SUMO1 and SUMO2. Mutational analyses revealed that SUMOylation occurs exclusively within the N-terminal activation function 1 (AF1) domain predominantly at lysines 33 and 77. Ligand binding to the C-terminal ligand-binding domain (LBD) of PPARγ1 reduces SUMOylation of lysine 33 but not of lysine 77. SUMOylation of lysine 33 and lysine 77 represses basal and ligand-induced activation by PPARγ1. We further show that lysine 365 within the LBD is not a target for SUMOylation as suggested in a previous report, but it is essential for full LBD activity. Our results suggest that PPARγ ligands negatively affect SUMOylation by interdomain communication between the C-terminal LBD and the N-terminal AF1 domain. The ability of the LBD to regulate the AF1 domain may have important implications for the evaluation and mechanism of action of therapeutic ligands that bind PPARγ.  相似文献   

15.
16.
17.
18.
The aromatic hydrocarbon receptor (AhR)-dependent pathway involved in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced immunotoxicity has been studied extensively, but the AhR-independent molecular mechanism has not. In previous studies we found that the AhR is not expressed in L-MAT, a human lymphoblastic T-cell line. In this report, we provide the following evidence that the protein kinase C (PKC)theta activity is functionally involved in the AhR-independent signal transduction mechanism that participates in the TCDD-induced L-MAT cell apoptosis. First, only rottlerin, a novel PKC (nPKC)-selective inhibitor, blocked the apoptosis completely, in a dose-dependent manner. Second, PKCtheta was the major nPKC isoform (compared to PKCdelta) expressed in the L-MAT cell line. Third, a cell-permeable myristoylated PKCtheta pseudosubstrate peptide inhibitor also blocked the apoptosis completely, in a dose-dependent manner. Fourth, both rottlerin and myristoylated PKCtheta pseudosubstrate peptide inhibitor completely inhibited PKCtheta kinase activity in vitro at doses that effectively blocked TCDD-induced L-MAT cell apoptosis. TCDD treatment induced a time-dependent activation of nPKC kinase activity in L-MAT cells, and moreover, TCDD induced a translocation of PKCtheta from the cytosolic fraction to the particulate fraction in L-MAT cells. Finally, transient over-expression of a dominant negative PKCtheta (a kinase-dead mutant, K/R 409) in L-MAT cells conferred significant protection against TCDD-induced apoptosis.  相似文献   

19.
20.
The gel retardation assay was used to analyze the role of the thyroid hormone receptor alpha (TR alpha) ligand-binding domain (LBD) in controlling receptor interaction with a thyroid hormone responsive element (TRE). While wild type receptor TR alpha binds to the TRE mainly as monomer, deletion of 85 amino acids from its C-terminus results in a mutant receptor with enhanced DNA binding that forms several slow mobility complexes as revealed by gel retardation assay. Receptor deletion mutants that lack most of the LBD show significantly elevated DNA binding and are still able to bind to DNA as two complexes. Thus, the C-terminal end of TR alpha appears to interfere with the dimerization/oligomerization function and DNA binding of TR alpha. All C-terminal deletion mutants have lost their T3-responsive activator function, but some show constitutive activity. Nuclear factor from several cell lines, including CV-1, F9, and GC cells, interacts with TR alpha receptor to form a larger molecular weight complex as determined by gel retardation assay. This factor could not be detected in HeLatk- cells, where TR alpha does not activate a TRE-containing reporter gene. The nuclear factor is heat sensitive and does not bind to TRE itself but can interact with TR alpha in the absence of DNA. Deletion analysis demonstrates that the leucine zipper-like sequence located in the LBD of TR alpha is involved in this interaction. Together, our data suggest that TR alpha contains a dimerization function outside the LBD which is inhibited by the carboxy-terminal region, while the leucine zipper-like sequence in the LBD is required for interaction with a nuclear factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号