首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Contamination of hospital water systems with legionellae is a well-known cause of nosocomial legionellosis. We describe a new real-time LightCycler PCR assay for quantitative determination of legionellae in potable water samples. Primers that amplify both a 386-bp fragment of the 16S rRNA gene from Legionella spp. and a specifically cloned fragment of the phage lambda, added to each sample as an internal inhibitor control, were used. The amplified products were detected by use of a dual-color hybridization probe assay design and quantified with external standards composed of Legionella pneumophila genomic DNA. The PCR assay had a sensitivity of 1 fg of Legionella DNA (i.e., less than one Legionella organism) per assay and detected 44 Legionella species and serogroups. Seventy-seven water samples from three hospitals were investigated by PCR and culture. The rates of detection of legionellae were 98.7% (76 of 77) by the PCR assay and 70.1% (54 of 77) by culture; PCR inhibitors were detected in one sample. The amounts of legionellae calculated from the PCR results were associated with the CFU detected by culture (r = 0.57; P < 0.001), but PCR results were mostly higher than the culture results. Since L. pneumophila is the main cause of legionellosis, we further developed a quantitative L. pneumophila-specific PCR assay targeting the macrophage infectivity potentiator (mip) gene, which codes for an immunophilin of the FK506 binding protein family. All but one of the 16S rRNA gene PCR-positive water samples were also positive in the mip gene PCR, and the results of the two PCR assays were correlated. In conclusion, the newly developed Legionella genus-specific and L. pneumophila species-specific PCR assays proved to be valuable tools for investigation of Legionella contamination in potable water systems.  相似文献   

3.
Production of the chlorosis-inducing phytotoxin coronatine in the Pseudomonas syringae pathovars atropurpurea, glycinea, maculicola, morsprunorum, and tomato has been previously reported. DNA hybridization studies previously indicated that the coronatine biosynthetic gene cluster is highly conserved among P. syringae strains which produce the toxin. In the present study, two 17-bp oligonucleotide primers derived from the coronatine biosynthetic gene cluster of P. syringae pv. glycinea PG4180 were investigated for their ability to detect coronatine-producing P. syringae strains by PCR analysis. The primer set amplified diagnostic 0.65-kb PCR products from genomic DNAs of five different coronatine-producing pathovars of P. syringae. The 0.65-kb products were not detected when PCR experiments utilized nucleic acids of nonproducers of coronatine or those of bacteria not previously investigated for coronatine production. When the 0.65-kb PCR products were digested with ClaI, PstI, and SmaI, fragments of identical size were obtained for the five different pathovars of P. syringae. A restriction fragment length polymorphism was detected in the amplified region of P. syringae pv. atropurpurea, since this pathovar lacked a conserved PvuI site which was detected in the PCR products of the other four pathovars. The 0.65-kb PCR products from six strains comprising five different pathovars of P. syringae were cloned and sequenced. The PCR products from two different P. syringae pv. glycinea strains contained identical DNA sequences, and these showed relatedness to the sequence obtained for the pathovar morsprunorum. The PCR products obtained from the pathovars maculicola and tomato were the most similar to each other, which supports the hypothesis that these two pathovars are closely related.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Two newly recognized parvovirus species, rat parvovirus 1 (RPV-1) and rat minute virus 1 (RMV-1), were recently identified in naturally infected rats. In this study, two polymerase chain reaction (PCR) assays were developed to specifically detect RPV-1 and RMV-1. The RPV-1 PCR assay amplified the expected 487-bp deoxyribonucleic acid (DNA) fragment only in the presence of RPV-1 DNA; the RMV-1 PCR assay amplified the expected 843-bp product only from RMV-1 DNA, not from other rodent parvoviruses. The RPV-1 and the RMV-1 PCR assays detected approximately 18 and 70 copies of DNA template, respectively. These two PCR assays were shown to be sensitive, specific and rapid methods for detecting RPV-1 and RMV-1 infections in rats. These assays may also be valuable for evaluation of biological specimens for parvovirus contamination.  相似文献   

5.
The aim of the present study was to develop a noble and specific marker for a quantitative polymerase chain reaction (PCR) assay for the species-specific detection of Pseudomonas aeruginosa based on the O-antigen acetylase gene. It is an important challenge to characterize populations of the bacterium P. aeruginosa, an opportunist by virtue of its physiological and genetic adaptability. However, molecular and serological methods currently available for sensitive and specific detection of P. aeruginosa are by no means satisfactory because there have been critical defects in the diagnosis and identification of P. aeruginosa strains in that these assays also detect other Pseudomonas species, or do not obtain amplified products from P. aeruginosa strains. Therefore, a primer set was designed based on the O-antigen acetylase gene of P. aeruginosa PA01 because it has been known that this gene is structurally diverse among species. The specificity of the primer set was evaluated using genomic DNA from six isolates of P. aeruginosa, 18 different species of Pseudomonas, and 23 other reference pathogenic bacteria. The primer set used in the PCR assay amplified a 232-bp amplicon for only six P. aeruginosa strains. The assay was also able to detect at least 1.41?×?103?copies/μl of cloned amplified target DNA using purified DNA, or 2.7?×?102 colony-forming unit per reaction when using calibrated cell suspension. In conclusion, this assay can be applied as a practical diagnostic method for epidemiological research and the sanitary management of water with a low level or latent infection of P. aeruginosa.  相似文献   

6.
The sequence of the gene iaaL of Pseudomonas savastanoi EW2009 was used to design primers for PCR amplification. The iaaL-derived primers directed the amplification of a 454-bp fragment from genomic DNA isolated from 70 strains of P. savastanoi, whereas genomic DNA from 93 non-P. savastanoi isolates did not yield this amplified product. A previous bacterial enrichment in the semiselective liquid medium PVF-1 improved the PCR sensitivity level, allowing detection of 10 to 100 CFU/ml of plant extract. P. savastanoi was detected by the developed enrichment-PCR method in knots from different varieties of inoculated and naturally infected olive trees. Moreover, P. savastanoi was detected in symptomless stem tissues from naturally infected olive plants. This enrichment-PCR method is more sensitive and less cumbersome than the conventional isolation methods for detection of P. savastanoi.  相似文献   

7.
Reliability of the most widely used PCR screenings for the human opportunistic pathogen Pseudomonas aeruginosa was evaluated. Specificity analyses showed the gyrB, toxA, and 16S-23S rDNA internal transcribed spacer (ITS) but not the 16S rDNA, oprI, oprL, and fliC PCR screenings to discriminate P. aeruginosa cells from a collection of fifteen Pseudomonas species. Sensitivity analyses showed all these PCR except the toxA one to be reliable for 100% of the P. aeruginosa strains tested in this study. Specificity of the ITS and gyrB PCR screenings were further investigated on 9 soils and 29 freshwater DNA extracts of different origins, and on DNA extracted from 3 horse manures. The ITS PCR showed the highest efficacy on water and soil DNA extracts but only the gyrB one detected P. aeruginosa DNA in horse manure. DNA sequence analyses of ITS and gyrB PCR products revealed uncertainties and false positive results in these P. aeruginosa identification schemes. A novel PCR screening, targeting the ecfX gene, was thus developed. ecfX encodes an ECF (extracytoplasmic function) sigma factor which is restricted to P. aeruginosa, and might play a role in haem-uptake and virulence. Specificity and sensitivity analyses showed the ecfX PCR screening to be highly reliable, giving PCR products of the expected size for all P. aeruginosa strains tested and not amplifying DNA from any of the other Pseudomonas species tested. The ecfX PCR screening was validated on environmental DNA extracts. DNA sequence analyses of the ecfX PCR products confirmed their identity and allocation to P. aeruginosa. These investigations suggest a preferential colonization of water rather than soil environments by P. aeruginosa. Detection limits of P. aeruginosa in environmental samples were improved by the ecfX PCR screening.  相似文献   

8.
A method in which the polymerase chain reaction (PCR) was used was developed to amplify either a uidA gene fragment or a 16S rRNA gene fragment from Escherichia coli in sewage and sludge. Because of interference caused by humic acidlike substances, crude DNA extracts were purified with a Sephadex G-200 spun column before the PCR was begun. A Southern analysis in which a nonradioactive chemiluminescent method was used was performed to confirm the presence of PCR products. The sensitivity of detection for PCR products when the chemiluminescent method was used was determined to be 30 ag of E. coli genomic DNA template. In seeded sludge, the PCR amplified the target DNA from 80 E. coli cells per g of sludge and 50 Shigella dysenteriae cells per g of sludge. Because only 0.05 aliquot of a sludge extract was used for the PCR, we deduced that the PCR detected target DNA equivalent to the DNA of 2.5 to 4 cells in the extract. The PCR amplified the uidA fragment from diluted sewage influents and effluents containing E. coli cells. Therefore, the PCR performed with a chemiluminescent gene probe can be used to detect the presence of potentially pathogenic microorganisms in sewage and sludge. This technique can be expanded to permit direct detection of pathogenic microorganisms in water samples, thus leading to enhanced public health protection.  相似文献   

9.
A method to detect viable Cryptosporidium parvum oocysts was developed. Polyclonal immunoglobulin G against C. parvum oocyst and sporozoite surface antigens was purified from rabbit immune serum, biotinylated, and bound to streptoavidin-coated magnetic particles. C. parvum oocysts were captured by a specific antigen-antibody reaction and magnetic separation. The oocysts were then induced to excyst, and DNA was extracted by heating at 95 degrees C for 10 min. A 452-bp fragment of C. parvum DNA was amplified by using a pair of C. parvum-specific primers in PCR. The method detected as few as 10 oocysts in purified preparations and from 30 to 100 oocysts inoculated in fecal samples. The immunomagnetic capture PCR (IC-PCR) product was identified and characterized by a nested PCR that amplified a 210-bp fragment, followed by restriction endonuclease digestion of the IC-PCR and nested-PCR products at the StyI site and a nonradioactive hybridization using an internal oligonucleotide probe labeled with biotin. PCR specificity was also tested, by using DNAs from other organisms as templates. In the control experiments, inactivated oocysts were undetectable, indicating the ability of this method to differentiate between viable and nonviable oocysts. Thus, this system can be used to specifically detect viable C. parvum oocysts in environmental samples with great sensitivity, providing an efficient way to monitor the environment for C. parvum contamination.  相似文献   

10.
The polymerase chain reaction (PCR) was used to amplify a 760-base-pair (bp) fragment with the 220-kbp invasive plasmids of enteroinvasive Escherichia coli, Shigella flexneri, Shigella dysenteriae, Shigella boydii, and Shigella sonnei as templates. This PCR product was easily detected by agarose gel electrophoresis. A 210-bp AccI-PstI fragment lying within the amplified region was used as a probe in Southern hybridization blots and showed that the PCR-generated product was derived from the invasive plasmid. The application of PCR as a rapid method to detect enteroinvasive bacteria in foods was tested by inoculating lettuce with 10(4) S. flexneri cells per g in shigella broth base. Plasmid DNA was isolated from cultures of inoculated and uninoculated lettuce in broth after 0, 4, and 24 h of incubation. With the PCR, the 760-bp fragment was generated only from lettuce inoculated with S. flexneri, as shown by gel electrophoresis and confirmed both by Southern blotting and by nucleotide sequencing of the amplified region. Because the isolation of plasmid DNA, the performance of PCR, and gel electrophoresis all can be completed in 6 to 7 h, invasive enteric bacteria can be detected in less than 1 day.  相似文献   

11.
An automated fluorescence-based PCR system (a model AG-9600 AmpliSensor analyzer) was investigated to determine whether it could detect Shiga toxin-producing Escherichia coli (STEC). The AmpliSensor PCR assay involves amplification-mediated disruption of a fluorogenic DNA signal duplex (AmpliSensor) that is homologous to conserved target sequences in a 323-bp amplified fragment of Shiga toxin genes stx1, stx2, and stxe. Using the Amplisensor assay, we detected 113 strains of STEC belonging to 50 different serotypes, while 18 strains of non-Shiga-toxin-producing E. coli and 68 strains of other bacteria were not detected. The detection limits of the assay were less than 1 to 5 CFU per PCR mixture when pure cultures of five reference strains were used and 3 CFU per 25 g of food when spiked ground beef samples that were preenriched overnight were used. The performance of the assay was also evaluated by using 53 naturally contaminated meat samples and 48 raw milk samples. Thirty-two STEC-positive samples that were confirmed to be positive by the culture assay were found to be positive when the AmpliSensor assay was used. Nine samples that were found to be positive when the PCR assay was used were culture negative. The system described here is an automated PCR-based system that can be used for detection of all serotypes of STEC in food or clinical samples.  相似文献   

12.
A multiplex PCR assay was devised and compared with standard conventional methods for quality evaluation of pharmaceutical raw materials and finished products with low levels of microbial contamination. Samples which were artificially contaminated with <10 colony forming units of Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella species and possibly contaminated samples were incubated for 16 h with different enrichment media. Primers that deduce 559 bp fragment of the 16S rRNA gene was employed in amplifying E. coli species, similarly invasion protein gene with 275 bp fragment size was used as target for detecting Salmonella spp., in case of S. aureus a 461 bp amplicon from m-RNA nuclease gene, and an 709 bp fragment from oprL gene was used for amplifying P. aeruginosa. The detection limits for artificially contaminants by multiplex PCR was 1 CFU/g, where as in case of conventional method the detection limit was >2 CFU/g. Similarly, when tested with possibly contaminated samples, 35% were detected for E. coli, Salmonella spp., S. aureus and P. aeruginosa species with multiplex PCR, while only 21% were detected with standard conventional microbial methods. Multiplex PCR assay provides sensitive and reliable results and allows for the cost-effective detection of all four bacterial pathogens in single reaction tube.  相似文献   

13.
A multiplex PCR (mPCR) method was designed for the simultaneous detection of 4 major fish pathogens, Flavobacterium psychrophilum, Lactococcus garvieae, Pseudomonas aeruginosa, and P. putida. Each of the 4 pairs of oligonucleotide primers exclusively amplified the 16S rDNA gene of their targeted microorganism. The average detection limits for each organism amplified by mPCR were 2 colony-forming units (CFU) of F. psychrophilum, 3 CFU of L. garvieae, 3 CFU of P. aeruginosa, and 5 CFU of P. putida in mixed cultures. Multiplex PCR did not produce any nonspecific amplification products when tested against 28 related species of bacteria. High amounts of DNA from 1 bacterial species had a significant effect on the amplification sensitivity of the other bacterial species when these were present in lower concentrations in the multiplex reaction. The mPCR assay proved useful for the detection of the bacteria in naturally infected fish. The assay is a sensitive, specific, and reproducible diagnostic tool for the simultaneous detection of 4 pathogenic bacteria that cause disease in fish and offers a potentially useful alternative to the conventional culture-based method.  相似文献   

14.
The polymerase chain reaction was used to detect clinical samples of Mycoplasma pneumoniae. A 245-bp region of the cytoadhesin P1 gene was shown to be specifically amplified in Myc. pneumoniae , but not in other species of Mollicutes. Picogram amounts of Myc. pneumoniae DNA could be detected per ml blood serum by use of a simple and reliable protocol for sample preparation and a PCR reaction involving two rounds of amplification. Application of the PCR-based method for the detection of Myc. pneumoniae in serum samples and throat swabs from patients with atypical pneumonia showed that it could be used in clinical diagnosis.  相似文献   

15.
Contamination of hospital water systems with legionellae is a well-known cause of nosocomial legionellosis. We describe a new real-time LightCycler PCR assay for quantitative determination of legionellae in potable water samples. Primers that amplify both a 386-bp fragment of the 16S rRNA gene from Legionella spp. and a specifically cloned fragment of the phage lambda, added to each sample as an internal inhibitor control, were used. The amplified products were detected by use of a dual-color hybridization probe assay design and quantified with external standards composed of Legionella pneumophila genomic DNA. The PCR assay had a sensitivity of 1 fg of Legionella DNA (i.e., less than one Legionella organism) per assay and detected 44 Legionella species and serogroups. Seventy-seven water samples from three hospitals were investigated by PCR and culture. The rates of detection of legionellae were 98.7% (76 of 77) by the PCR assay and 70.1% (54 of 77) by culture; PCR inhibitors were detected in one sample. The amounts of legionellae calculated from the PCR results were associated with the CFU detected by culture (r = 0.57; P < 0.001), but PCR results were mostly higher than the culture results. Since L. pneumophila is the main cause of legionellosis, we further developed a quantitative L. pneumophila-specific PCR assay targeting the macrophage infectivity potentiator (mip) gene, which codes for an immunophilin of the FK506 binding protein family. All but one of the 16S rRNA gene PCR-positive water samples were also positive in the mip gene PCR, and the results of the two PCR assays were correlated. In conclusion, the newly developed Legionella genus-specific and L. pneumophila species-specific PCR assays proved to be valuable tools for investigation of Legionella contamination in potable water systems.  相似文献   

16.
Abstract:  Predators are important biotic factors in the population dynamics of the diamondback moth, Plutella xylostella . A specific DNA marker was developed to detect P. xylostella in the gut contents of two polyphagous predators, Nabis kinbergii and Lycosa sp. A distinct 275-bp product was amplified by polymerase chain reaction (PCR) from the internal transcribed spacer (ITS-1) of the ribosomal gene of P. xylostella , but not from 11 other arthropod species collected from Brassica fields in South Australia. Fortuitously, the primer set could also amplify DNA products from two species and three varieties of Brassica plants, with the fragment size about 600 bp. When N. kinbergii was analysed after feeding a single fourth instar P. xylostella , 67% of individuals were positive with the 275-bp PCR product up to 16 h after feeding. Likewise, the PCR product was detected in 80% individuals of Lycosa sp. up to 72 h after feeding on a single fourth instar P. xylostella larva. Initial tests of samples collected from the field showed that the predation incidences for both N. kinbergii and Lycosa sp. determined by the 275-bp fragment corresponded to the density of P. xylostella in the field.  相似文献   

17.
Pseudomonas aeruginosa is a well-known opportunistic pathogen that can cause acute nosocomial necrotizing pneumonia and genetic disorder cystic fibrosis of lung patients. Pathogenic interactions between P. aeruginosa and hosts are often guided by the secreted virulence determinants that interact with specific host targets. Exotoxin A, pyocyanin, elastase, and type III secretion system are the most significant virulence determinants and cause great concern. However, P. aeruginosa in various environments has high genotypic diversity, leading to deficiency of exotoxin genes for some P. aeruginosa strains. In current study, a universal primer-multiplex PCR method (UP-MPCR) was employed for the detection of five significant enterotoxin genes (toxA, phzM, lasB, ExoU, and ExoS) and one internal control gene ecfX in P. aeruginosa. Owing to the application of universal primer (UP), different targeted products have identical amplified efficiency and the sensitivity of multiplex PCR is improved. In addition, the complexity of multiplex PCR system is reduced and the compatibility of primers in a reaction is greatly increased. This UP-MPCR method can detect the presence of five P. aeruginosa enterotoxin genes in a single assay more rapidly and sensitively than conventional methods. In 214 drinking water and environmental isolates, the ExoU, ExoS, phzM, toxA, and lasB genes were detected in 20 (9?%), 180 (84?%), 179 (84?%), 196 (92?%), and 171 (80?%) isolates, respectively.  相似文献   

18.
Use of PCR methods for identification of Listeria monocytogenes in milk   总被引:4,自引:0,他引:4  
The aim of this work was to estimate the limit of Listeria monocytogenes cfu in polymerase chain reaction (PCR) for a DNA fragment of listeriolysine O (hly A) gene. The PCR method, with used primers selected in areas of the listeriolysin O gene, allows to differentiate L. monocytogenes strains from other Listeria species. The amplified fragment (456 bp) of hly A gene was obtained for all strains L. monocytogenes and no other Listeria species. The PCR method with the selected primers allowed to detect 50-500 cfu L. monocytogenes/ml suspended in water or milk. Among 20 samples of raw milk from cows, 10 samples contained > 50 cfu L. monocytogenes/ml. Obtained results indicate that the PCR assay of L. monocytogenes identification is technically simple and may be conduct with minimal time. So, it could be recommended as quick diagnostic method in identification L. monocytogenes in milk.  相似文献   

19.
DNA markers were identified for the molecular detection of the Asian long-horned beetle (ALB), Anoplophora glabripennis (Mot.), based on sequence characterized amplified regions (SCARs) derived from random amplified polymorphic DNA (RAPD) fragments. A 2,740-bp DNA fragment that was present only in ALB and not in other Cerambycids was identified after screening 230 random primers in a PCR-based assay system. Three pairs of nested 22-mer oligonucleotide primers were designed on the basis of the sequence of this fragment and were used to perform diagnostic PCR. The first pair of primers (SCAR1) amplified a single 745-bp fragment of ALB DNA, but this did not differentiate ALB from other species. The other two pairs of SCAR primers (SCAR2 and SCAR3) amplified bands of 1,237- and 2,720-bp, respectively, that were capable of differentiating ALB from other closely related non-native and native Cerambycids, such as A. chinensis (Forster), A. malasiaca (Thomson), A. nobilis (Ganglbauer), Monochamus scutellatus (Say), Plectrodera scalator (Fab), Saperda tridentata (Olivier), and Graphisurus fasciatus (Degeer). The latter two SCAR markers could be amplified using DNA extracted from body parts of ALB such as the wing, the leg, and the antennae as well as tissues from all the developmental stages including the egg, larva, pupa, and adult. These markers were also capable of identifying ALB using the DNA extracted from frass. Our results demonstrate that the SCAR markers we have identified can be used for unambiguously identifying ALB from other closely related Cerambycids using a simple PCR procedure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号