首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
V A Gushchin 《Tsitologiia》1975,17(6):674-681
The formulas are proposed which allow to verify the equality of the diurnal streams of cells from one to another phase of mitotic cycle for systems with the diurnal rythm of mitotic index. The unequality of the diurnal stream of cells from S into G2 phase and the diurnal streams from G2 into M phase for hepatocytes of 3-weeks old mice is assumed to be caused by the passage of about 75 percent of cells from G2 phase directly to the resting phase R1. Part of these cells may then return from R1 to G1 phase.  相似文献   

2.
The phenomenon of total replacement of preexisting and damaged hepatocytes in mice were demonstrated by the method of autoradiography. Adult mice were injected an alkylating drug Dipin 2 h prior to partial hepatectomy and then proliferating cells were labelled by means of multiple injections of 14C-thymidine. Dipin in combination with mitotic stimulation induced multiple mitotic aberrations in proliferating hepatocytes resulting in degeneration, death and then elimination of prelabelled liver cells. New parenchymal tissue originated from non-labelled preneoplastic nodules. These hepatocyte nodules grew in size, propagated and 8-10 months later completely replaced the preexisting hepatocytes.  相似文献   

3.
The phenomenon of G2 phase prolongation was found in the population of mouse hepatocytes. In normal postnatal liver growth, G2 phase prolongation in not pronounced and occurs in a small fraction of proliferating hepatocytes. In case of liver regeneration after removal of 2/3 of the organ, G2 phase prolongation is observed in a population of hepatocytes, which response to the proliferative stimulus first. Estimation of individual variation in expression of prolonged G2 phase along with the detailed analysis of the structure of the process of proliferation in the main population of hepatocytes (cells with normal G2 phase) allows to define the biological meaning of the "G2-population" observed. The prolongation of G2 phase may result from non-specific cell damage in mitotic cycles, caused by destruction of trophic relations in liver during its growth and regeneration.  相似文献   

4.
H-ras gene is expressed at the G1 phase in primary cultures of hepatocytes   总被引:1,自引:0,他引:1  
The expression of c-H-ras and proliferating cell nuclear antigen (PCNA) in primary cultures of rat hepatocytes was determined in order to elucidate the relationship between the c-H-ras gene and the S phase of the cell cycle. In cells treated with EGF, elevation of c-H-ras expression was detected at the 22nd, 34th, 44th, and 54th h after plating, PCNA expression and DNA synthesis were detected at the 44th and 54th h. In cells without EGF treatment, only c-H-ras expression was detected at the 44th and 54th h. In our previous report, we showed that c-myc expression increased within several hours after plating, suggesting that isolated hepatocytes traverse from G0 to G1 under culture conditions, regardless of EGF treatment. These results clearly showed that the c-H-ras gene of adult rat hepatocytes was expressed in the mid-to-late G1 phase of the cell cycle as well as in the early S phase in primary culture.  相似文献   

5.
Flow cytometric multiparameter analysis of two proliferation-associated nuclear antigens (proliferating cell nuclear antigen (PCNA)/cyclin and Ki-67) was performed on seven human hematopoietic cell lines. PCNA/cyclin, an S phase-related antigen, was detected using an autoantibody and a fluorescein isothiocyanate-labeled anti-human antibody. The Ki-67 antigen, which in cycling cells is expressed with increasing levels during the S phase with a maximum in the M phase, was detected using a monoclonal antibody and a phycoerythrin-conjugated anti-mouse antibody. In some experiments the PCNA/Ki-67 staining was combined with a DNA stain, 7-amino actinomycin D, and simultaneous detection of the three stains was performed by a single laser flow cytometer. Using this technique four distinct cell populations, representing G1, S, G2, and M, respectively, could be demonstrated in cycling cells on the basis of their PCNA/cyclin and Ki-67 levels. The cell cycle phase specificity could be verified using metaphase (vinblastine, colcemide) and G2 phase (mitoxantrone) blocking agents, as well as by stainings with a mitosis-specific antibody (MPM-2). Also, G0 cells could be discriminated from G1 cells in analysis of a mixture of resting peripheral mononuclear blood cells and a proliferating cell line. This technique can be valuable in detailed cell cycle analysis, since all cell cycle phases can be visualized and calculated using a simple double staining procedure.  相似文献   

6.
Chemical agents for cell cycle synchronization have greatly facilitated the study of biochemical events driving cell cycle progression. G1, S and M phase inhibitors have been developed and used widely in cell cycle research. However, currently there are no effective G2 phase inhibitors and synchronization of cultured cells in G2 phase has been challenging. Recently, a selective CDK1 inhibitor, RO-3306, has been identified that reversibly arrests proliferating human cells at the G2/M phase border and provides a novel means for cell cycle synchronization. A single-step protocol using RO-3306 permits the synchronization of >95% of cycling cancer cells in G2 phase. RO-3306 arrested cells enter mitosis rapidly after release from the G2 block thus allowing for isolation of mitotic cells without microtubule poisons. RO-3306 represents a new molecular tool for studying CDK1 function in human cells.  相似文献   

7.
We here report the influence of the cell cycle abrogator UCN-01 on RKO human colon carcinoma cells differing in p53 status following exposure to two DNA damaging agents, the topoisomerase inhibitors etoposide and camptothecin. Cells were treated with the two drugs at the IC90 concentration for 24 h followed by post-incubation in drug-free medium. RKO cells expressing wild-type, functional p53 arrested the cell cycle progression in both the G1 and G2 phases of the cell cycle whereas the RKO/E6 cells, which lack functional p53, only arrested in the G2 phase. Growth-arrested cells did not resume proliferation even after prolonged incubation in drug-free medium (up to 96 h). To evaluate the importance of the cell cycle arrest on cellular survival, a non-toxic dose of UCN-01 (100 nM) was added to the growth-arrested cells. The addition of UCN-01 was accompanied by mitotic entry as revealed by the appearance of condensed chromatin and the MPM-2 phosphoepitope, which is characteristic for mitotic cells. G2 exit and mitotic transit was accompanied by a rapid activation of caspase-3 and apoptotic cell death. The influence of UCN-01 on the long-term cytotoxic effects of the two drugs was also determined. Unexpectedly, abrogation of the G2 arrest had no influence on the overall cytotoxicity of either drug. In contrast, addition of UCN-01 to cisplatin-treated RKO and RKO/E6 cells greatly increased the cytotoxic effects of the alkylating agent. These results strongly suggest that even prolonged cell cycle arrest in the G2 phase of the cell cycle is not necessarily coupled to efficient DNA repair and enhanced cellular survival as generally believed.  相似文献   

8.
In the regenerating liver hepatocytes the centriolar cycle is retarded corresponding to the delay of the nuclear cycle up to the beginning of G2-block. A prolonged staying of cells in the premitotic condition results in the phenomenon that according to their DNA these cells correspond to the G2-period, whereas according to their centriolar complex structure they move into the following G1 and G0-periods, passing mitosis. Thus, in the G2-blocked hepatocytes there is a separation of the nuclear cycle and centriolar cycles. Moreover, during the diping action the centriolar capacity of forming cytoplasmic and mitotic microtubules is suppressed.  相似文献   

9.
Immunocytochemical localization of chick DNA polymerases alpha and beta +   总被引:4,自引:0,他引:4  
An immunofluorescent method using specific antibodies was employed to detect DNA polymerases alpha and beta in chick cells. With monoclonal antibodies produced by four independent hybridoma clones, most of the DNA polymerase alpha was shown to be present in nuclei of cultured chick embryonic cells. With a polyclonal, but highly specific, antibody against DNA polymerase beta, this enzyme was also shown to be present in nuclei. DNA polymerase alpha was detected in proliferating cells before cell contact and in lesser amount in resting cells after cell contact, indicating that its content is closely correlated with cell proliferation. On the other hand, similar amounts of DNA polymerase beta were detected in proliferating and resting cells. Furthermore, DNA polymerase beta was detected in nuclei of most cells, while DNA polymerase alpha was detected only in large round nuclei in seminiferous tubules of chick testis. DNA polymerase alpha is presumably present in cells that are capable of DNA replication, and during the cell cycle it seems to remain in the nuclei during the G1, S, and G2 phases, but to leave from condensed chromatin for the cytoplasm during the mitotic phase.  相似文献   

10.
The alkylating drug dipin was injected to mice 2 hours before a partial hepatectomy. Liver regeneration was characterized by a decrease of the intensity of 3H-thymidine label, an increase of the labeled cell index, absence of mitoses, constant number of binuclear cells. The analysis of these data has shown that dipin causes a sharp (more than by 2 times) increase of the S-period and prolonged (up to 6--20 days) blocking of cells in the G2-period. No phenomenon of unbalanced growth was recorded. No changes in duration of prereplicative period, or in the volume of proliferative pool were recorded. The increase of mitotic cycle periods resulted in the cell population synchronization: by the end of the second ay more than a half of hepatocytes were in S-period, by the end of the third day about 80% of cells passed to G2-period.  相似文献   

11.
R A Gilissen  J H Meerman 《Life sciences》1992,51(16):1255-1260
Sulfation activity towards N-hydroxy-2-acetylaminofluorene and 4-nitrophenol was determined in male rat liver cytosol at several time points after partial hepatectomy corresponding to G1-, S-, and M-phase. N-hydroxy-2-acetylaminofluorene sulfation activity decreased by 80% when hepatocytes entered the G1-phase. This lower activity was maintained during the S-phase and M-phase, but was restored when hepatocytes entered the G0-phase again. Sulfation activity towards 4-nitrophenol did not alter after hepatectomy. Various other cytosolic enzyme activities were determined after hepatectomy to investigate the specificity of the decrease in sulfation activity. Lactate dehydrogenase and glucose-6-phosphate dehydrogenase activities were increased in the S- and M-phase by maximally 80% and 60%, respectively. Glutathione-S-transferase and glutamate-pyruvate transaminase activity did not alter during the cell cycle. These results indicate that sulfation of N-hydroxy-2-acetylaminofluorene in hepatocytes may depend on the phase of the cell cycle. The relevance of the finding is discussed in relation to the resistance of proliferating (pre)neoplastic hepatocytes to the toxic and mitoinhibitory effects of N-hydroxy-2-acetylaminofluorene.  相似文献   

12.
The proliferating cells of mouse epidermis (basal cells) can be separated from the non-proliferating cells (differentiating cells) Laerum, 1969) and brought into a monodisperse suspension. This makes it possible to determine the cell cycle distributions (e.g. the relative number of cells in the G1, S and (G1 + M) phases of the cell cycle) of the basal cell population by means of micro-flow fluorometry. To study the regenerative cell proliferation in epidermis in more detail, changes in cell cycle distributions were observed by means of micro-flow fluorometry during the first 48 hr following adhesive tape stripping. 3H-TdR uptake (LI and grain count distribution) and mitotic rate (colcemid method) were also observed. An initial accumulation of G2 cells was observed 2 hr after stripping, followed by a subsequent decrease to less than half the control level. This was followed by an increase of cells entering mitosis from an initial depression to a first peak between 5 and 9 hr which could be satisfactorily explained by the changes in the G2 pool. After an initial depression of the S phase parameters, three peaks with intervals of about 12 hr followed. The cells in these peaks could be followed as cohorts through the G2 phase and mitosis, indicating a partial synchrony of cell cycle passage, with a shortening of the mean generation time of basal cells from 83-3 hr to about 12 hr. The oscillations of the proportion of cells in G2 phase indicated a rapid passage through this cell cycle phase. The S phase duration was within the normal range but showed a moderate decrease and the G1 phase duration was decreased to a minimum. In rapidly proliferating epidermis there was a good correlation between change in the number of labelled cells and cells with S phase DNA content. This shows that micro-flow fluorometry is a rapid method for the study of cell kinetics in a perturbed cell system in vivo.  相似文献   

13.
Flow cytometric bivariate analysis was used to investigate the expression of PCNA, p120 and p145 during the cell cycle of a mammalian cell line (CHO-K1). Initially, aliquots of cells in exponential and plateau (G0) phase were analyzed for proliferation associated antigen expression. Expression of PCNA and p145 during G0 was markedly depressed (less than 12% positive) while 54% of the G0 cells stained positive for p120. The fluorescent intensity (mean channel fluorescence) of these G0 positive p120 cells, however, was only slightly above the mean channel fluorescence (MCF) of cells stained with a negative isotype control. In asynchronous cultures, all three antigens were expressed in greater than 70% of the cells, with PCNA staining being greater than 95%. Cells were then synchronized using mitotic selection (mitotic index of 97%) and antigen levels were measured as cells progressed synchronously through the cell cycle. From DNA analysis histograms, it appeared that the degree of synchrony was approximately 90% throughout the remainder of the cell cycle. The bivariate DNA/PCNA, DNA/p120, and DNA/p145 histograms for mitotic cells indicated that both p120 and p145 expression were elevated (percent positive and MCF) while PCNA levels were near controls (MCF). In early G1, all three markers were depressed (less than 12% positive); however PCNA levels rose precipitously in mid-G1 (greater than 50% positive). In late G1 to early S, p145 levels increased concomitantly with increases in p120. All three antigens were elevated throughout S phase and began to decline as cells moved from G2/M to G1 of the next cell cycle with p145 expression decreasing first. This report indicates that all three proliferation associated antigens studied are differentially expressed in the cell cycle and therefore may be useful in detecting and assessing the proliferation state.  相似文献   

14.
Prothymosin alpha (ProT alpha) is a widely distributed acidic protein whose function has been related to cell proliferation. We have analyzed the expression of the rat ProT alpha gene in several proliferative systems: concanavalin A (ConA)/interleukin-2-stimulated thymocytes, ConA-stimulated splenic T-lymphocytes, and hepatocytes proliferating during liver regeneration. In these systems, ProT alpha mRNA was detected in all stages of the cell cycle, with maximal increments (2-4-fold) at the beginning of the S phase. By contrast, the mRNAs for proliferating cell nuclear antigen/cyclin and histone H3, two cell-cycle-regulated proteins, were hardly detected in resting cells but increased notably at the G1/S boundary and in the S phase, respectively. Treatment of T-cells with the calcium ionophore A23187 increased ProT alpha mRNA levels 2.5-fold, whereas phorbol 12-myristate 13-acetate, a protein kinase C activator, had no effect on ProT alpha gene expression. Incubation of ConA-stimulated T-cells with hydroxyurea, a DNA synthesis inhibitor, did not decrease the levels of ProT alpha mRNA, indicating that its expression is independent of DNA synthesis. These findings suggest that ProT alpha is required throughout all the stages of the cell cycle, resembling a constitutively expressed gene rather than one strictly involved in cell proliferation.  相似文献   

15.
E Colomb  F Kopp  F Spyratos  P M Martin 《Cytometry》1989,10(3):263-272
The authors have developed a new methodology for characterizing in situ the cell cycle of human mammary epithelial cell lines. Using a SAMBA 200 cell image processor (scanning cytometry), 15 densitometric and textural parameters were computed on each Feulgen-stained nucleus. Parameters computed from the grey level cooccurrence and run-length section matrices allowed assessment of the chromatin pattern. Multiparametric analysis of data defined: 1) the relative position of each cell; 2) the relative positions of groups of cells, each group corresponding to a definite phase of the cell cycle; and 3) the function of these parameters best separating these phases. Files then were constructed for each phase: G0/G1, S, G2/ and M. Using these three files as a reference to classify cells, it was possible to ascertain the phase of the cell cycle for each cell of a population. The MDA AG human cell line synchronized by mitotic selection was used as a model to develop this method. The criteria used to assign cells to G0/G1, S, or G2 was DNA content. Classification in M phase was achieved by visual identification of mitotic cells. This method was checked on unsynchronized MDA AG and then applied to other human cell lines (MDA MB231, MCF-7, T47D C111). Comparison of results obtained by scanning cytometry and flow cytometry showed the proportion of cells assigned to G0/G1, S, and G2/M by the two methods to be similar. This new method removes some of the limitations of flow cytometry by 1) allowing visual verification of each cell analyzed; 2) lowering the number of cells required for study; 3) discriminating between G2 and M; and 4) preserving cell topography.  相似文献   

16.
The objective of this study was to investigate whether G1 cells could enter S phase after premature chromosome condensation resulting from fusion with mitotic cells. HeLa cell synchronized in early G1, mid-G1, late G1, and G2 and human diploid fibroblasts synchronized in G0 and G1 phases were separately fused by use of UV-inactivated Sendai virus with mitotic HeLa cells. After cell fusion and premature chromosome condensation, the fused cells were incubated in culture medium containing Colcemid (0.05 micrograms/ml) and [3H]thymidine ([3H]ThdR) (0.5 microCi/ml; sp act, 6.7 Ci/mM). At 0, 2, 4, and 6 h after fusion, cell samples were taken to determine the initation of DNA synthesis in the prematurely condensed chromosomes (PCC) on the basis of their morphology and labeling index. The results of this study indicate that PCC from G0, G1, and G2 cells reach the maximum degree of compaction or condensation at 2 h after PCC induction. In addition, the G1-PCC from normal and transformed cells initiated DNA synthesis, as indicated by their "pulverized" appearance and incorporation of [3H]ThdR. Further, the initiation of DNA synthesis in G1-PCC occurred significantly earlier than in the mononucleate G1 cells. Neither pulverization nor incorporation of label was observed in the PCC of G0 and G2 cells. These findings suggest that chromosome decondensation, although not controlling the timing of a cell's entry into S phase, is an important step for the initiation of DNA synthesis. These data also suggest that the entry of a S phase may be regulated by cell cycle phase-specific changes in the permeability of the nuclear envelope to the inducers of DNA synthesis present in the cytoplasm.  相似文献   

17.
Cells of the yeast Saccharomyces cerevisiae are known to acquire thermotolerance in response to the stresses of starvation or heat shock. We show here through the use of cell cycle inhibitors that blockage of yeast cells in the G1, S, or G2 phases of the mitotic cell cycle is not a stress that induces thermotolerance; arrested cells remained as sensitive to thermal killing as proliferating cells. These G1- or S-phase-arrested cells were unimpaired in the acquisition of thermotolerance when subjected to a mild heat shock by incubation at 37 degrees C. One cell cycle inhibitor, o-phenanthroline, did in fact cause cells to become thermotolerant but without induction of the characteristic pattern of heat shock proteins. Thermal induction of heat shock protein synthesis was unaffected; the o-phenanthroline-treated cells could still synthesize heat shock proteins upon transfer to 37 degrees C. Use of a novel mutant conditionally defective only for the resumption of proliferation from stationary phase (M. A. Drebot, G. C. Johnston, and R. A. Singer, Proc. Natl. Acad. Sci. USA 84:7948-7952, 1987) indicated that o-phenanthroline inhibition produces a stationary-phase arrest, a finding which is consistent with the increased thermotolerance and regulated cessation of proliferation exhibited by the inhibited cells. These findings show that the acquired thermotolerance of cells is unrelated to blockage of the mitotic cell cycle or to the rapid synthesis of the characteristic spectrum of heat shock proteins.  相似文献   

18.
The effects of 0.5% and 0.025% solutions of colchicine on the passage of cells through the mitotic cycle in apical meristems of primary roots of Vicia faba have been examined. Both treatments affected cell progression through the mitotic cycle in the same way: S and G1 were shorter, and G2 and mitosis longer, than the corresponding control values. The duration of the various phases of the mitotic cycle were similar to those reported previously for apical meristems of lateral roots though cycle time itself was longer. Recovery of root proliferating tissues from colchicine-induced inhibition of growth is correlated with the presence of quiescent cells. Meristems which have no quiescent cells do not recover from eolchicine treatment, while meristems which contain many quiescent cells recover faster than those which contain few. The growth fraction and the proportion of proliferating cells with a short cycle time are linearly related to the duration of the S period in root meristems.  相似文献   

19.
Hydrogen peroxide (H(2)O(2)) induces a number of events, which are also induced by mitogens. Since the progression through the G1 phase of the cell cycle is dependent on mitogen stimulation, we were interested to study the effect of H(2)O(2) on the cell cycle progression. This study demonstrates that H(2)O(2) inhibits DNA synthesis in a dose-dependent manner when given to cells in mitosis or at different points in the G1 phase. Interestingly, mitotic cells treated immediately after synchronization are significantly more sensitive to H(2)O(2) than cells treated in the G1, and this is due to the inhibition of the cell spreading after mitosis by H(2)O(2). H(2)O(2) reversibly inhibits focal adhesion activation and stress fiber formation of mitotic cells, but not those of G1 cells. The phosphorylation of MAPK is also reversibly inhibited in both mitotic and G1 cells. Taken together, H(2)O(2) is probably responsible for the inhibition of the expression of cyclin D1 and cyclin A observed in cells in both phases. In conclusion, H(2)O(2) inhibits cell cycle progression by inhibition of the spreading of mitotic CHO cells. This may play a role in pathological processes in which H(2)O(2) is generated.  相似文献   

20.
Lectin- and antigen-induced proliferation of murine T cells consists of two major events, namely, a rapid induction of susceptibility to growth factors and a later-occurring, accessory cell-dependent production of T cell growth factors (TCGF). The mechanism by which interferon (IFN) inhibits T cell responses was studied accordingly. A decrease of Con A-induced proliferation was observed in the presence of increasing amounts of IFN. The reduced proliferative response in such cultures was found to be due to an accumulation of cells in the G0/G1 phase of the cell cycle. Furthermore, the results show that IFN did not inhibit the early events in T cell triggering, because the acquisition of responsiveness of resting T cells to TCGF was unaltered in the presence of IFN, nor did it interfere with production of TCGF. In contrast, IFN was found to interfere with the TCGF-dependent T cell blast growth. Cytofluorometric analysis of the proliferative phase revealed that IFN exerts its effect on T cells, which have entered the proliferative cycle, by a postmitotic accumulation in G0/G1, thus reducing the proliferating population. The results demonstrate that IFN primarily affects the later phase of proliferative activity after T cell triggering, leaving the helper cell functions untouched.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号