首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The immunological release of SRS-A was investigated in guinea-pig chopped lung. A number of unsaturated fatty acids, all of which are substrates for arachidonate lipoxygenase were found to potentiate the release of SRS-A. This potentiation was enhanced by indomethacin, a cyclo-oxygenase inhibitor, and completely reversed by nordihydroguaiaretic acid (NDGA) and eicosatetraynoic acid (ETA) which inhibit lipoxygenase. This suggests that some aspect of arachidonate lipoxygenase action stimulates release of SRS-A and that release of SRS-A is increased by redirection of arachidonic acid (AA) metabolism via the lipoxygenase pathway (Hamberg, 1976). However, although exogenous 14C-AA increased SRS-A output it was not incorporated into SRS-A.  相似文献   

2.
A detailed examination of the effects of exogenous arachidonate on cation metabolism in rabbit neutrophils was undertaken. Arachidonic acid stimulates the movement of 45Ca into and out of the neutrophils with a net result, in the presence of extracellular calcium, of increasing the steady-state level of 45Ca. Arachidonate also increases the uptake of 22Na. These effects of arachidonate are specific to these cations, concentration-dependent, and sensitive to lipoxygenase inhibitors. At the concentrations used in this study arachidonate does not influence the permeability of human erythrocytes to 45Ca. Furthermore, both arachidonic acid and F-Met-Leu-Phe release calcium from a previously unexchangeable intracellular pool and the effect of the two stimuli are not additive. Arachidonic acid-dependent, but not F-Met-Leu-Phe-dependent, calcium release is sensitive to lipoxygenase inhibitors. These two stimuli thus appear to release is sensitive to lipoxygenase inhibitors. These two stimuli thus appear to release calcium from the same pool(s) by separate mechanisms. The results summarized above are consistent with the hypothesis that one or more arachidonate metabolites are involved in the mechanism underlying the chemotactic factor induced permeability changes in rabbit neutrophils.  相似文献   

3.
Indomethacin augmented the release of histamine and SRS-A but abolished synthesis of TxB2. Compound CLI that inhibited both cyclo-oxygenase and lipoxygenase pathways of arachidonic acid metabolism did not augment release of anaphylactic mediators. 13-HPLA enhanced mediator release from lungs in which arachidonic acid metabolism was blocked by compount CLI. Thus, it is concluded that 13-HPLA enhances mediator release not by altering the balance of arachidonic acid metabolites, e.g. by inhibiting synthesis of prostacyclin, but by a direct effect on lung mast cells. A corollary to this conclusion is that the fatty acid hydroperoxide (HPETE) formed by lipoxygenase from arachidonic acid may also augment the release of anaphylactic mediators. Thus, the enhancement of mediator release by indomethacin may be attributed to increased synthesis of HPETE following inhibition of cyclo-oxygenase.  相似文献   

4.
Slices of dog spleen converted [14C]-arachidonic acid (AA) to a polar material which conjugated with [3H]-glutatione. Nordihydroguaiaretic acid (NDGA) and 5,8,11,14, Eicosatetraynoic acid (ETYA) but not indomethacin, inhibited the conversion of [14C]-arachidonic acid by the spleen slices into the polar material indicating that it is derived through the lipoxygenase pathway. Physicochemical analysis of the polar metabolite of arachidonic acid after thin-layer chromatography and high pressure liquid chromatography revealed that it has chemical properties identical to authentic leukotriene C4 standard (LTC4). The biological activity of the purified material was found to be similar to the slow reacting substance of anaphylaxis (SRS-A), viz, it caused contraction of the guinea-pig ileum which was abolished by FPL-55172, a specific SRS-A receptor antagonist. These data suggest that dog spleen slices convert arachidonic acid through lipoxygenase pathway into a polar material that appears to be identical to LTC4.  相似文献   

5.
Albumin is a major determinant of eicosanoid formation, affecting autacoids important in cell-cell interactions. We delineated three mechanisms by which albumin controlled platelet eicosanoid formation: 1) Albumin diverted free arachidonate toward 12-lipoxygenation. 2) Albumin enhanced release of arachidonate from phospholipids. 3) Albumin inhibited incorporation of arachidonate from the medium into platelet phospholipids. 12(S)-Hydroxyheptadecatrienoic acid (12-HHTrE) formation was reduced 70% by albumin as compared to that formed in albumin-free medium. In sharp contrast, formation of 12(S)-hydroxyeicosatetraenoic acid (12-HETE), the platelet lipoxygenase product, was much less influenced by albumin. Moreover, 12-HETE production in the presence of albumin was markedly increased and prolonged after aspirin treatment. These data suggested that albumin redirected released endogenous arachidonate from cyclooxygenase to lipoxygenase. Therefore, the metabolic fate of arachidonate present in the medium of stimulated platelets was studied by adding tracer [3H]arachidonate 30 sec before thrombin. Albumin increased arachidonate metabolism by lipoxygenase 7-fold as compared to albumin-free controls, while cyclooxygenation increased 2.7-fold. Redirection of eicosanoid metabolism by albumin toward lipoxygenase products constitutes a heretofore undescribed and potentially important physiological role for albumin. In vitro utilization of albumin may reflect in vivo events in thrombosis and hemostasis more accurately than previous studies without albumin could appreciate.  相似文献   

6.
HeLa cells incubated with 12-O-tetradecanoylphorbol-13-acetate (TPA), and rat basophilic leukemia (RBL-1) cells incubated with calcium ionophore, showed increased levels of the protease plasminogen activator. These treatments have previously been shown to stimulate the cellular metabolism of arachidonic acid. The induction of plasminogen activator in both cell types was inhibited in a dose-dependent manner by 5,8,11,14-eicosatetraynoic acid and nordihydroguaiaretic acid, two compounds known to inhibit arachidonate metabolism via lipoxygenases. In contrast, indomethacin, which selectively inhibits arachidonate metabolism via cyclooxygenase, was inactive. The levels of four enzyme markers in HeLa cells were unchanged by treatment with TPA plus the lipoxygenase inhibitors, indicating that the inhibitors did not exert their effects on plasminogen activator via general cell toxicity. HeLa cells preincubated with [3H]arachidonate and subsequently challenged with TPA produced small amounts of material with the chromatographic mobilities and resistance to indomethacin expected of hydroxylated fatty acids derived via lipoxygenase. RBL-1 cells have been shown previously to produce leukotrienes and other lipoxygenase metabolites when treated with calcium ionophore. Plasminogen activator in HeLa cells was stimulated by up to 2.5-fold by incubation with 0.5–2 μg/ml 5-hydroxyeicosatetraenoic acid. Our results suggest that the induction of plasminogen activator in HeLa and RBL-1 cells is not mediated by prostaglandins or thromboxanes, but may be mediated or modulated by arachidonate metabolites derived via a lipoxygenase pathway.  相似文献   

7.
Rat basophilic leukemia (RBL-1) cells metabolized arachidonic acid through more than one enzymatic pathway. The major cyclooxygenase product was prostaglandin (PG) D2 as established by chromatographic and chemical behavior and the effect on platelet aggregation. PGD2 formation from exogenous arachidonic acid was inhibited by indomethacin, 1 μg/ml. RBL-1 incubated with exogenous arachidonic acid also formed SRS-A the synthesis of which was not inhibited by indomethacin. However, the SRS-A activity was blocked by the specific receptor antagonist FPL 55712. [14C]arachidonic acid was effectively incorporated into the phospholipids of RBL-1 cells. Challenge of such prelabelled cells or unlabelled cells with A 23187 caused release of PGD2, SRS-A and another presently unidentified product. However, with A 23187 as a stimulus, the RBL-1 cyclo-oxygenase could not be blocked by low concentrations of indomethacin. This work further substantiates our earlier findings that SRS-A formed from arachidontic acid is not a cyclooxegenase product.  相似文献   

8.
The purification of SRS-A for the purpose of structure determination has enabled us to investigate whether pure SRS-A has activity on the microvasculature. SRS-A from challenged sensitised lung in vitro was purified using five stages of purification. At each stage SRS-A activity was assayed against an in-house standard using the guinea-pig ileum blocked with mepyramine and hyoscine. The material obtained at each stage was then tested for its ability to induce plasma exudation (measured using the accumulation of intravenously-injected [131I]-albumin) in guinea-pig skin. It was found that vascular permeability-increasing activity corresponded with guinea-pig ileum contracting activity throughout the purification procedure. The final product, homogeneous SRS-A, at doses of 4 – 6 ng, produced a clear increase in vascular permeability. Two other lipoxygenase products which have been proposed to be derived from the same hydroperoxide intermediate as SRS-A, 5-hydroxyeicosatetraenoic acid and 5,12-dihydroxyeicosatetraenoic acid (leukotriene B), showed little effect on vascular permeability. PGE1 was found to potentiate plasma exudation induced by SRS-A to a greater extent than that induced by histamine. SRS-A, as a permeability-increasing agent in the presence of PGE1, was approximately 400 times more potent (on a molar basis) than histamine. When 133Xe was used to measure blood flow changes, chemically pure SRS-A was found to reduce flow in skin; 4 – 6 ng of SRS-A producing a 40–50% reduction.It is suggested that these actions of SRS-A may be important in pathophysiological conditions.  相似文献   

9.
GRF, a specific stimulator of GH release, increased in a concentration- and time-dependent manner pituitary [3H]-arachidonate levels in vitro. This effect was antagonized by 100 nM somatostatin. Exogenous arachidonate also stimulated GH release in vitro. Quinacrine, a phospholipase A2 inhibitor, reduced both basal and GRF-stimulated free arachidonate levels as well as GH release. The cyclooxygenase inhibitor indomethacin was ineffective, while BW755c, which also inhibits the lipoxygenase pathway, produced a further increase in the levels of the fatty acid stimulated by GRF and potently reduced GH release. These results provide additional evidence for the involvement of arachidonate metabolism in the hormone-releasing effect of GRF at the somatotroph.  相似文献   

10.
The effects of Ca-antagonists on the thrombin-induced mobilization of radiolabeled arachidonate preincorporated into rat platelets as well as the subsequent formation of labeled cyclooxygenase and lipoxygenase products were analyzed in the presence of either Call or Ca2+-substitutes, Sr2+ and Ba2+. Results indicate that following thrombin stimulation (0.2 U/ml) in the presence of Ca2+, nitrendipine (Nit), Cd2+ or Mn2+ reduced the release of arachidonate and the biosynthesis of thromboxane 132- Inhibition of arachidonic acid release and metabolism were also obtained by both Nit and Cd2+ in the presence of Sr2+ and Bat+. Results from studies with a semi-purified phospholipase A2 fraction prepared from rat platelets indicated that the activity was almost unaffected by Nit or Cd2+. From these findings, we concluded that inhibition of platelet-induced release and metabolism of arachidonic acid by the Ca-antagonists tested require intact platelets. These data support the hypothesis of an interaction of these agents at an unknown surface membrane level.Abbreviations AA Arachidonic Acid - 5-HT 5-hydroxy-tryptamine - HETE 12-hydroxyeicosatetraenoic acid - HHT 12-hydroxy-heptadecanoic acid - HHT Nitrendipine - TXB2 Thromboxane B2  相似文献   

11.
Accumulation of cyclic GMP in estradiol-treated immature guinea pig myometrium was enhanced by carbachol, ionophore A23186, unsaturated fatty acids and their hydroperoxides. Cyclic AMP content was elevated only by arachiodonic acid, A23187 and PGI2. Eicosatetraynoic acid (TYA), but not indomethacin prevented all cyclic GMP responses. The effects of A23187 and arachidonate on cyclic AMP were accompanied by a parallel increase (2–3 fold) on the generation of PGI2 by the myometrium. Both events were similarly reduced by indomethacin, TYA, 15-hydroperoxyarachidonic acid and tranylcypromine, suggesting that PGI2 was involved. Omission of Ca2+ or addition of mepacrine of p-bromophenacylbromide abolished the stimulatory effects of A23187 and carbachol on cyclic GMP as well as the A23187-induced elevations in both PGI2 and cyclic AMP generation. Thus, with both exogenous arachidonate as well as with endogenous fatty acid, released through an apparent phospholipase A2-induced activation process, the lipoxygenase pathway was associated with an activation of the cyclic GMP system and the cyclooxygenase pathway, via PGI2 generation, with an activation of the cyclic AMP system. Carbachol failed to alter both cyclic AMP content and the release of PGI2 suggesting a cholinergic receptor-mediated fatty acid release process, selectively coupled to the lipoxygenase route.  相似文献   

12.
Prostaglandins F2 alpha and E2 increase release of immunoreactive (irANP) in primary cultures of rat atrial cardiocytes. This effect is independent of cell density in the cultures and does not appear to operate through a cAMP-dependent mechanism. Studies that probed the PGF2 alpha effect with a number of different pharmacological antagonists suggest that it is tied to a calmodulin-dependent step. This latter effect does not appear to be related to increased calcium entry through voltage-gated channels in the plasma membrane nor to mobilization of ryanodine-sensitive intracellular calcium pools. Inhibitors of the lipoxygenase pathway, a second avenue of arachidonate metabolism, resulted in a decrease in irANP release from cultured atrial or ventricular cardiocytes. Leukotriene C4, a lipoxygenase product, had a modest effect to promote irANP release over a 24-h period. However, pretreatment of anesthetized rats with nordihydroguarietic acid, a lipoxygenase inhibitor, had no effect on stretch-dependent release of irANP from the heart in vivo. These findings suggest that the prostaglandins represent the more important group of arachidonate metabolites in regulating irANP release physiologically.  相似文献   

13.
Sodium arachidonate and sodium oleate increased particulate guanylate cyclase activity from homogenates of Balb 3T3 cells or rat liver. The fatty acids were about equipotent and were maximally effective at about 100 μm concentrations. Higher concentrations were less effective or inhibitory. Activation was similar in an air or nitrogen atmosphere and was unaltered by KCN, aspirin, or indomethacin. The dose-response curve was shifted to the right when arachidonate was preincubated prior to its addition to guanylate cyclase assays. Agents that facilitate fatty acid oxidation and the formation of malonyldialdehyde during preincubation such as glutathione, hemoglobin, Mn2+, Fe3+, or lipoxygenase shifted the dose-response curve further to the right. In contrast, agents that decreased or prevented arachidonate oxidation and malonyldialdehyde formation during preincubation such as butylated hydroxyanisole, propyl gallate, hydroquinone, and diphenylfuran prevented the shift in the dose-response curve or in some instances shifted the dose-response curve to the left. Activation of guanylate cyclase by arachidonate was reversed by the addition of lipoxygenase to incubations. These studies indicate that unsaturated fatty acids and not their oxidation products activate particulate enzyme from Balb 3T3 cells. The mechanism of fatty acid activation appears to be different from activation by nitro compounds. Fatty acids but not nitro compounds activated fibroblast preparations, and the effect of fatty acids in contrast to the activation by nitroprusside in liver preparations was not prevented with Lubrol PX.  相似文献   

14.
Interactions of human platelets with neutrophils were studied in suspensions of [3H]arachidonate-labeled platelets and unlabeled neutrophils stimulated with ionophore A23187. Several radioactive arachidonate metabolites, not produced by platelets alone, were detected, including [3H]-labeled leukotriene B4 (LTB4), dihydroxyeicosatetraenoic acid (DHETE) and 5-hydroxyeicosatetraenoic acid (5-HETE). When [3H]12-HETE, a platelet product, was added to stimulated neutrophils, DHETE was formed. Similarly, when [3H]5-HETE, a neutrophil product, was added to stimulated platelets, DHETE was the major product. These results suggest that upon stimulation: 1) platelet-derived arachidonate may serve as precursor for the neutrophil-derived eicosanoids LTB4 and 5-HETE, and 2) that platelet-derived 12-HETE can be converted to DHETE by human neutrophils. The present investigation documents cell-cell interactions via the lipoxygenase pathway, which may be important in hemostasis, thrombosis and inflammation.  相似文献   

15.
The mechanisms involved in the characteristic, normal biphasic pattern of glucose-induced insulin release (which is grossly altered in type II diabetics) have not been definitely elucidated. However, the temporal pattern of arachidonic acid release induced by cellular phospholipases precisely mimics that of first-phase insulin release, both being characterized by a burst of release peaking near 2—3 minutes and followed by a “trough” or apparent refractory period most apparent at 5–10 minutes. The latter appears temporally related not only to decreased arachidonate release but also to stimulation of its re-esterification. Pancreatic islets contain a glucose-sensitive phospholipase A2, and glucose has been shown to increase the accumulation of islet lipoxygenase-derived products which appear to be “third messengers” mediating insulin release. Blockade either of islet phospholiphase(s) or of islet lipoxygenase totally abrogates glucose-induced insulin release. The hypothesis is therefore proposed that phospholiphase A2 could be one beta cell “glucose sensor”, and that the released arachidonate is coupled to an islet lipoxygenase. Labile oxygenated metabolites (lipid peroxides and epoxides) transduce the glucose signal into insulin release. The available data (albeit incomplete) are compatible with the formulation that the biphasic pattern of glucose-induced insulin release could be explained by dynamic changes in the availability of arachidonic acid and its consequent oxygenation.  相似文献   

16.
Previous studies have demonstrated that [3H]arachidonic acid is released from prelabeled human neutrophil phospholipids when the cells are stimulated by calcium ionophore A23187 or by opsonized zymosan. Neither lysophospholipid generated by phospholipase A2 activity, diacylglycerol nor monoacylglycerol produced via phospholipase C/diacylglycerol lipase action have been identified following neutrophil challenge. The inability to detect any intermediates during the release of arachidonate is due to either rapid reacylation of lysophospholipid or conversion of diacylglycerol (monoacylglycerol) to cellular acylglycerols. The addition of exogenous [14C]fatty acid at the time of challenge was employed to determine the involvement of either phospholipase A2 or phospholipase C activities. Neutrophil stimulation with calcium ionophore A23187 resulted in an incorporation of exogenous [14C]arachidonate into phosphatidylinositol and phosphatidylcholine, those phospholipids which specifically release arachidonate. When the saturated fatty acid, [14C]stearate, replaced [14C]arachidonate, very little [14C]fatty acid was incorporated into any of the phospholipid species. Lipid phosphorus measurements revealed no significant mass change in any phospholipid class following ionophore challenge. Production of [14C]phosphatidic acid was not detected, as would be expected if diacylglycerol kinase and de novo phospholipid metabolism were significantly involved.  相似文献   

17.
Adhesion of cells to an extracellular matrix is characterized by several discrete morphological and functional stages beginning with cell-substrate attachment, followed by cell spreading, migration, and immobilization. We find that although arachidonic acid release is rate-limiting in the overall process of adhesion, its oxidation by lipoxygenase and cyclooxygenases regulates, respectively, the cell spreading and cell migration stages. During the adhesion of NIH-3T3 cells to fibronectin, two functionally and kinetically distinct phases of arachidonic acid release take place. An initial transient arachidonate release occurs during cell attachment to fibronectin, and is sufficient to signal the cell spreading stage after its oxidation by 5-lipoxygenase to leukotrienes. A later sustained arachidonate release occurs during and after spreading, and signals the subsequent migration stage through its oxidation to prostaglandins by newly synthesized cyclooxygenase-2. In signaling migration, constitutively expressed cyclooxygenase-1 appears to contribute approximately 25% of prostaglandins synthesized compared with the inducible cyclooxygenase-2. Both the second sustained arachidonate release, and cyclooxygenase-2 protein induction and synthesis, appear to be regulated by the mitogen-activated protein kinase extracellular signal-regulated kinase (ERK)1/2. The initial cell attachment-induced transient arachidonic acid release that signals spreading through lipoxygenase oxidation is not sensitive to ERK1/2 inhibition by PD98059, whereas PD98059 produces both a reduction in the larger second arachidonate release and a blockade of induced cyclooxygenase-2 protein expression with concomitant reduction of prostaglandin synthesis. The second arachidonate release, and cyclooxygenase-2 expression and activity, both appear to be required for cell migration but not for the preceding stages of attachment and spreading. These data suggest a bifurcation in the arachidonic acid adhesion-signaling pathway, wherein lipoxygenase oxidation generates leukotriene metabolites regulating the spreading stage of cell adhesion, whereas ERK 1/2-induced cyclooxygenase synthesis results in oxidation of a later release, generating prostaglandin metabolites regulating the later migration stage.  相似文献   

18.
Isolated rat pancreatic acini were employed to demonstrate that the exocrine pancreas can metabolize [14C]-arachidonic acid by way of the lipoxygenase pathway as well as the cyclooxygenase pathway. Analysis by high performance liquid chromtography delineated a monohydroxy acid, presumably 12-L-hydroxy-5,8–10,14-eicosatetraenoic acid (12-HETE) as the major lipoxygenase product. The formation of this hydroxy arachidonic derivative was stimulated by the calcium ionophore ionomycin. Stimulation of lipoxygenase pathway by ionomycin was confirmed by thin layer chromatography. In addition, 6-keto-PGF, PGF, and PGE2 were identified; and ionomycin, carbamylcholine, and caerulein enhanced the formation of these metabolites of the cyclooxygenase pathway. Ionomycin induced stimulation of HETE formation was inhibited by ETYA and nordihydroguaiaretic acid, but spontaneous and evoked enzyme secretion was unaffected. Thus, although ionomycin, a pancreatic secretagogue, stimulates the lipoxygenase pathway, the precise role of these arachidonate metabolites in the physiology of the exocrine pancreas is still obscure.  相似文献   

19.
S A Metz 《Life sciences》1986,38(23):2069-2076
There are considerable data implicating a pancreatic islet 12-lipoxy-genase in glucose-induced insulin secretion. This enzyme traditionally is conceived as converting unesterified arachidonic acid to "free" hydroperoxyeicosatetraenoic acid and metabolites thereof. However, studies employing the provision of exogenous metabolites of arachidonic acid to islet tissue fail to identify convincingly the mediator of insulin release. It is proposed that the islet lipoxygenase directly peroxidizes unsaturated fatty acids esterified within membrane phospholipids, leading to changes in ion flux and enzyme activity (particularly phospholipase A2) at the membrane level. The release of unesterified metabolites of arachidonate, although reflecting islet lipoxygenase activity, may be an epiphenomenon.  相似文献   

20.
We have found that arachidonic acid rapidly and selectively induces the release of lysosomal enzymes from cytochalasin B treated rabbit peritoneal neutrophils. 5, 8, 11, 14-eicosatetraynoic acid inhibits the arachidonate induced release with an apparent KD of 1.5 × 10?6M. 5,8,11,14-eicosatetraynoic acid (2.5 × 10?5M also inhibits the chemotactic factors and the A23187 induced release in the presence of cytochalasin B but does not affect the degranulation induced by A23187 alone. These observations strongly suggest a role for arachidonate metabolites in rabbit neutrophil physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号