首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 611 毫秒
1.
Although labelled glutamine is readily incorporated into labelled releasable GABA, it has been shown recently that high concentrations (0.1–0.5 mM) glutamine do not increase the release of GABA from brain slices, while greatly enhancing that of glutamate. Two possible reasons for this discrepancy were investigated: (a) That released GABA, in contrast to glutamate is not freshly synthesized but derives from GABA taken up by terminals. The possibility was made unlikely by the present finding which showed that even in the presence of the uptake inhibitor nipecotic acid, glutamine failed to enhance GABA release. (b) That glutamine is transported into GABA-ergic terminals by a high-affinity transport system which is saturated even at low glutamine concentrations obtained without adding glutamine to the superfusion fluid. However, when glutamine efflux was further reduced by prolonging depolarization with 50 mM K+ and by pretreatment with the glutamine synthetase inhibitor methionine sulfoximine, GABA release was depressed only very little and this decrease was related to the duration of depolarization and not to extracellular glutamine levels. These results can be reconciled with the ready incorporation of labelled glutamine into releasable GABA by assuming that GABA originates from a glutamate pool to which both glutamine and glucose contribute. The formation of releasable GABA however, is not governed by the supply of glutamate in this pool but by the activity of the rate-limiting enzyme glutamate decarboxylase.  相似文献   

2.
The Ral proteins are members of the Ras superfamily of GTPases. Because they reside in synaptic vesicles, we used transgenic mice expressing a dominant inhibitory form of Ral to investigate the role of Ral in neurosecretion. Using a synaptosomal secretion assay, we found that while K(+)-evoked secretion of glutamate was normal, protein kinase C-mediated enhancement of glutamate secretion was suppressed in the mutant mice. Since protein kinase C effects on secretion have been shown to be due to enhancement of the size of the readily releasable pool of synaptic vesicles docked at the plasma membrane, we directly measured the refilling of this readily releasable pool of synaptic vesicles after Ca(2+)-triggered exocytosis. Refilling of the readily releasable pool was suppressed in synaptosomes from mice expressing dominant inhibitory Ral. Moreover, we found that protein kinase C and calcium-induced phosphorylation of proteins thought to influence synaptic vesicle function, such as MARCKS, synapsin, and SNAP-25, were all reduced in synaptosomes from these transgenic mice. Concomitant with these studies, we searched for new functions of Ral by detecting proteins that specifically bind to it in cells. Consistent with the phenotype of the transgenic mice described above, we found that active but not inactive RalA binds to the Sec6/8 (exocyst) complex, whose yeast counterpart is essential for targeting exocytic vesicles to specific docking sites on the plasma membrane. These findings demonstrate a role for Ral-GTPase signaling in the modulation of the readily releasable pool of synaptic vesicles and suggest the possible involvement of Ral-Sec6/8 (exocyst) binding in modulation of synaptic strength.  相似文献   

3.
One of the pathways implicated in a fine-tuning control of neurosecretory process is the activation of presynaptic receptors. The present study was focused on the role of presynaptic glutamate receptor activation in the regulation of inhibitory synaptic transmission in the rat hippocampus and cortex. We aimed to clarify what types of ionotropic glutamate receptors are involved in the modulation of GABA secretion, and what mechanism underlies this modulation. We have revealed that specific agonists of kainate and NMDA receptors, kainate and NMDA, like glutamate, induced the release of [3H]GABA from hippocampal and cortical nerve terminals suggesting the involvement of both types in the regulation of GABAergic transmission. Our results indicate preferential involvement of vesicular, but not cytosolic, pool in response to glutamate receptor activation. This is based on the finding that NO-711 (a specific inhibitor of plasma membrane GABA transporters), fails to attenuate [3H]GABA release. We have concluded that presynaptic glutamate receptor-induced modulation of the strength of synaptic response is due to increasing the release probability of synaptic vesicles.  相似文献   

4.
M Kihara  Y Misu  T Kubo 《Life sciences》1988,42(19):1817-1824
Slices of the rat medulla oblongata were superfused and electrically stimulated. The amount of endogenous GABA, beta-alanine and glutamate release from the slices was determined by high performance liquid chromatography with fluorometric detection. Inhibitors of GABA-transaminase (GABA-T), aminooxyacetic acid (10(-5) M), gamma-acetylenic GABA (10(-4) and 10(-3) M) and gabaculine (10(-5) M), enhanced the stimulus-evoked release of GABA and reduced that of beta-alanine, while no change was observed in the release of glutamate. These changes in amino acid release from the slices were accompanied by an increase in the content of GABA and a decrease in that of beta-alanine. The stimulus-evoked release of these amino acids was abolished by Ca2+-deprivation, in either the presence or absence of GABA-T inhibitors. These results suggest a modulatory role of GABA-T for synaptically releasable GABA and involvement of this enzyme in the synthesis of releasable beta-alanine.  相似文献   

5.
Vesicular catecholamine release has been measured amperometrically from undifferentiated rat PC12 cells using carbon fiber microelectrodes. During superfusion with high K(+) saline, vesicular release was detected from approximately 50% of 200 cells investigated. On repeated stimulation the releasable pool of vesicles is rapidly depleted, while vesicle contents remains constant. Vesicular catecholamine release is not restored within 1 h after depletion of the releasable pool. Although the distribution of the cube root of vesicle contents of many cells is apparently Gaussian, maximum likelihood analysis of single cell data demonstrates double Gaussian distributions with median vesicle contents of 141 and 293 zeptomole. It is concluded that the releasable pool of vesicles in PC12 cells is heterogeneous. In the presence of l-DOPA mean vesicle contents increases, but cessation of release cannot be prevented, indicating that the number of releasable vesicles in PC12 cells is limited by a slow rate of vesicle cycling.  相似文献   

6.
The astrocyte is a major glial cell type of the brain, and plays key roles in the formation, maturation, stabilization and elimination of synapses. Thus, changes in astrocyte condition and age can influence information processing at synapses. However, whether and how aging astrocytes affect synaptic function and maturation have not yet been thoroughly investigated. Here, we show the effects of prolonged culture on the ability of astrocytes to induce synapse formation and to modify synaptic transmission, using cultured autaptic neurons. By 9 weeks in culture, astrocytes derived from the mouse cerebral cortex demonstrated increases in β-galactosidase activity and glial fibrillary acidic protein (GFAP) expression, both of which are characteristic of aging and glial activation in vitro. Autaptic hippocampal neurons plated on these aging astrocytes showed a smaller amount of evoked release of the excitatory neurotransmitter glutamate, and a lower frequency of miniature release of glutamate, both of which were attributable to a reduction in the pool of readily releasable synaptic vesicles. Other features of synaptogenesis and synaptic transmission were retained, for example the ability to induce structural synapses, the presynaptic release probability, the fraction of functional presynaptic nerve terminals, and the ability to recruit functional AMPA and NMDA glutamate receptors to synapses. Thus the presence of aging astrocytes affects the efficiency of synaptic transmission. Given that the pool of readily releasable vesicles is also small at immature synapses, our results are consistent with astrocytic aging leading to retarded synapse maturation.  相似文献   

7.
The release of [3H]GABA formed from [3H]glutamate in rat hippocampal slices   总被引:1,自引:0,他引:1  
to compare the storage and release of endogenous GABA, of [3H]GABA formed endogenously from glutamate, and of exogenous [14C]GABA, hippocampal slices were incubated with 5 microCi/ml [3,4-3H]1-glutamate and 0.5 microCi/ml [U-14C]GABA and then were superfused in the presence or absence of Ca+ with either 50 mM K+ or 50 microM veratridine. Endogenous GABA was determined by high performance liquid chromatography which separated labeled GABA from its precursors and metabolites. Exogenous [14C]GABA content of the slices declined spontaneously while endogenous GABA and endogenously formed [3H]GABA stayed constant over a 48 min period. In the presence of Ca+ 50 mM K+ and in the presence or absence of Ca2+ veratridine released exogenous [14C]GABA more rapidly than endogenous or endogenously formed [3H]GABA, the release of the latter two occurring always in parallel. The initial specific activity of released exogenous [14C]GABA was three times, while that of endogenously formed [3H]GABA was only 50% higher than that in the slices. There was an excess of endogenous GABA content following superfusion with 50 mM K+ and Ca2+, which did not occur in the absence of Ca2+ or after veratridine. The observation that endogenous GABA and [3H]GABA formed endogenously from glutamate are stored and released in parallel but differently from exogenous labelled GABA, suggests that exogenous [3H] glutamate can enter a glutamate pool that normally serves as precursor of GABA.  相似文献   

8.
L G Wu  J G Borst 《Neuron》1999,23(4):821-832
Recovery from synaptic depression is believed to depend mainly on replenishment of the releasable pool of vesicles. We observed that during recovery from depression in a calyx-type synapse, part of the releasable pool was replenished rapidly. Half recovery occurred within 1 s, even in the absence of residual calcium. Vesicles that had recently entered the releasable pool had a 7- to 8-fold lower release probability than those that had been in the pool for more than 30 s. These results suggest that the reduction in the release probability of releasable vesicles contributes greatly to the level of depression. How synapses maintain transmission during repetitive firing is in debate. We propose that during repetitive firing, accumulation of intracellular Ca2+ may facilitate release of the rapidly replenished but reluctant vesicles, making them available for sustaining synaptic transmission.  相似文献   

9.
Studies of the properties of synaptic transmission have been carried out at only a few synapses. We analyzed exocytosis from rod photoreceptors with a combination of physiological and ultrastructural techniques. As at other ribbon synapses, we found that rods exhibited rapid kinetics of release, and the number of vesicles in the releasable pool is comparable to the number of vesicles tethered at ribbon-style active zones. However, unlike other previously studied neurons, we identified a highly Ca(2+)-sensitive pool of releasable vesicles with a relatively shallow relationship between the rate of exocytosis and [Ca(2+)](i) that is nearly linear over a presumed physiological range of intraterminal [Ca(2+)]. The low-order [Ca(2+)] dependence of release promotes a linear relationship between Ca(2+) entry and exocytosis that permits rods to relay information about small changes in illumination with high fidelity at the first synapse in vision.  相似文献   

10.
Augmentation is a potentiation of the exocytotic process   总被引:1,自引:0,他引:1  
Stevens CF  Wesseling JF 《Neuron》1999,22(1):139-146
Short-term synaptic enhancement is caused by an increase in the probability with which synaptic terminals release transmitter in response to presynaptic action potentials. Since exocytosed vesicles are drawn from a readily releasable pool of packaged transmitter, enhancement must result either from an increase in the size of the pool or an elevation in the fraction of releasable vesicles that undergoes exocytosis with each action potential. We show here that at least one major component of enhancement, augmentation, is not caused by an increase in the size of the readily releasable pool but is instead associated with an increase in the efficiency with which action potentials induce the exocytosis of readily releasable vesicles.  相似文献   

11.
Glutamate-mediated excitotoxicity plays a major role in the degeneration of motor neurons in amyotrophic lateral sclerosis and reduced astrocytary glutamate transport, which in turn increases the synaptic availability of the amino acid neurotransmitter, was suggested as a cause. Alternatively, here we report our studies on the exocytotic release of glutamate as a possible source of excessive glutamate transmission. The basal glutamate efflux from spinal cord nerve terminals of mice-expressing human soluble superoxide dismutase (SOD1) with the G93A mutation [SOD1/G93A(+)], a transgenic model of amyotrophic lateral sclerosis, was elevated when compared with transgenic mice expressing the wild-type human SOD1 or to non-transgenic controls. Exposure to 15 mM KCl or 0.3 μM ionomycin provoked Ca(2+)-dependent glutamate release that was dramatically increased in late symptomatic and in pre-symptomatic SOD1/G93A(+) mice. Increased Ca(2+) levels were detected in SOD1/G93A(+) mouse spinal cord nerve terminals, accompanied by increased activation of Ca(2+)/calmodulin-dependent kinase II and increased phosphorylation of synapsin I. In line with these findings, release experiments suggested that the glutamate release augmentation involves the readily releasable pool of vesicles and a greater capability of these vesicles to fuse upon stimulation in SOD1/G93A(+) mice.  相似文献   

12.
The role of glial cells for the inactivation and synthesis of precursors for amino acid transmitters was studied in the brains of anesthetized rats in vivo using the microdialysis technique. The dialysis probes were inserted stereotactically into each neostriatum. One neostriatum was treated with the gliotoxin fluorocitrate, whereas the contralateral side served as a control. The basal efflux of amino acids, reflecting the extracellular level, was measured as well as the efflux during depolarization with 100 mM K+ in the dialysis stream. The potassium-evoked efflux of transmitter amino acids was calcium dependent and thus considered to reflect release from the transmitter pool. gamma-Aminobutyric acid (GABA) and glutamate release from the treated side was higher than the control value during the first 2-3 h, a result indicating an important role of glial cells in the inactivation of released transmitter. After 6-7 h with fluorocitrate, the release of glutamate was lower than the control value, a result indicating an important role of glial cells in the synthesis of precursors for the releasable pool of glutamate. The role of glutamine for the production of transmitter glutamate and GABA in vivo was further investigated by inhibiting glutamine synthetase with intrastriatally administered methionine sulfoximine. The release of gluatamate into the dialysis probe decreased to 54% of the control value, whereas the release of GABA decreased to 22% of the control value, a result indicating that glutamine may be more important for transmitter GABA than for transmitter glutamate.  相似文献   

13.
We discuss a model of presynaptic vesicle dynamics, which allows for heterogeneity in release probability among vesicles. Specifically, we explore the possibility that synaptic activity is carried by two types of vesicles; first, a readily releasable pool and, second, a reluctantly releasable pool. The pools differ regarding their probability of release and time scales on which released vesicles are replaced by new ones. Vesicles of both pools increase their release probability during repetitive stimulation according to the buildup of Ca(2+) concentration in the terminal. These properties are modeled to fit data from the calyx of Held, a giant synapse in the auditory pathway. We demonstrate that this arrangement of two pools of releasable vesicles can account for a variety of experimentally observed patterns of synaptic depression and facilitation at this synapse. We conclude that synaptic transmission cannot be accurately described unless heterogeneity of synaptic release probability is taken into account.  相似文献   

14.
Chromaffin cell exocytosis is triggered by Ca(2+) entry through several voltage-dependent channel subtypes. Because it was postulated that immediately releasable vesicles are closely associated with Ca(2+) channels, we wondered what channel types are specifically coupled to the release of this pool. To study this question, cultured mouse chromaffin cell exocytosis was followed by patch-clamp membrane capacitance measurements. The immediately releasable pool was estimated using paired pulse stimulation, resulting in an upper limit of 31+/-3 fF for control conditions (I(Ca): 25+/-2 pA/pF). The N-type channel blocker omega-conotoxin-GVIA affected neither I(Ca) nor the immediately releasable pool exocytosis; although the L channel blocker nitrendipine decreased current by 50%, it did not reduce this pool significantly; and the R channel inhibitor SNX-482 significantly reduced the current but induced only a moderate decrease in the estimated IRP exocytosis. In contrast, the P/Q channel blocker omega-Agatoxin-IVA decreased I(Ca) by 37% but strongly reduced the immediately releasable pool (upper limit: 6+/-1 fF). We used alpha1A subunit knockout mice to corroborate that P/Q Ca(2+) channels were specifically linked to immediately releasable vesicles, and we found that also in this preparation the exocytosis of this pool was severely decreased (6+/-1 fF). On the other hand, application of a strong stimulus that caused the fusion of most of releasable vesicles (3 min, 50 mM K(+)) induced similar exocytosis for wild type and knockout cells. Finally, whereas application of train stimulation on chromaffin cells derived from wild type mice provoked typical early synchronous and delayed asynchronous exocytosis components, the knockout derived cells presented a strongly depressed early exocytosis but showed a prominent delayed asynchronous component. These results demonstrate that P/Q are the dominant calcium channels associated to the release of immediately releasable pool in mouse chromaffin cells.  相似文献   

15.
Precise regulation of neurotransmitter release is essential for the normal function of neural networks, but the mechanisms involved are largely unclear. Using superfused synaptosomes, we have studied the readily releasable pool of synaptic vesicles, measured as the amount of release triggered by hypertonic sucrose. We show that activation of presynaptic metabotropic glutamate receptors by dihydroxyphenylglycine and stimulation of protein kinase C by phorbol esters enhance the readily releasable pool of glutamate. Although the molecular nature of the readily releasable pool is unknown, one possibility is that during its generation, SNARE proteins form full core complexes, and that core complex formation occurs prior to neurotransmitter release. To test this possibility, we employed N-ethylmaleimide (NEM), an inhibitor of the ATPase N-ethylmaleimide-sensitive factor that dissociates core complexes, to study the relation of the readily releasable pool to core complex assembly in synaptosomes. NEM induced a dose-dependent increase in the readily releasable pool of neurotransmitters but by itself did not trigger release. Direct measurements of core complexes confirmed that NEM caused an increase in the levels of SNARE core complexes under these conditions. Our data suggest that in the readily releasable pool of synaptic vesicles, SNARE proteins are fully assembled into core complexes, and that SNARE complex assembly is a target of presynaptic regulation.  相似文献   

16.
Synaptic vesicles in the nerve terminal play a pivotal role in neurotransmission. Neurotransmitter accumulation into synaptic vesicles is catalyzed by distinct vesicular transporters, harnessing an electrochemical proton gradient generated by V-type proton-pump ATPase. However, little is known about regulation of the transmitter pool size, particularly in regard to amino acid neurotransmitters. We previously provided evidence for the existence of a potent endogenous inhibitory protein factor (IPF), which causes reduction of glutamate and GABA accumulation into isolated, purified synaptic vesicles. In this study we demonstrate that IPF is concentrated most in the synaptosomal cytosol fraction and that, when introduced into the synaptosome, it leads to a decrease in calcium-dependent exocytotic (but not calcium-independent) release of glutamate in a concentration-dependent manner. In contrast, alpha-fodrin (non-erythroid spectrin), which is structurally related to IPF and thought to serve as the precursor for IPF, is devoid of such inhibitory activity. Intrasynaptosomal IPF also caused reduction in exocytotic release of GABA and the monoamine neurotransmitter serotonin. Whether IPF affects vesicular storage of multiple neurotransmitters in vivo would depend upon the localization of IPF. These results raise the possibility that IPF may modulate synaptic transmission by acting as a quantal size regulator of one or more neurotransmitters.  相似文献   

17.
The effects that active phorbol esters, staurosporine, and changes in actin dynamics, might have on Ca2+ -dependent exocytosis of [3H]-labelled noradrenaline, induced by either membrane-depolarizing agents or a Ca2+ ionophore, have been examined in isolated nerve terminals in vitro. Depolarization-induced openings of voltage-dependent Ca2+ channels with 30 mM KCl or 1 mM 4-aminopyridine induced limited exocytosis of [3H]noradrenaline, presumably from a readily releasable vesicle pool. Application of the Ca2+ ionophore calcimycin (10 microM) induced more extensive [3H]noradrenaline release, presumably from intracellular reserve vesicles. Stimulation of protein kinase C with phorbol 12-myristate,13-acetate increased release evoked by all secretagogues. Staurosporine (1 microM) had no effect on depolarization-induced release, but decreased ionophore-induced release and reversed all effects of the phorbol ester. When release was induced by depolarization, internalization of the actin-destabilizing agent DNAase I into the synaptosomes gave a slight increase in [3H]NA release and strongly increased the potentiating effect of the phorbol ester. In contrast, when release was induced by the Ca2+ ionophore, DNAase I had no effect, either in the absence or presence of phorbol ester. The results indicate that depolarization of noradrenergic rat synaptosomes induces Ca2+ -dependent release from a releasable pool of staurosporine-insensitive vesicles. Activation of protein kinase C increases this release by staurosporine-sensitive mechanisms, and destabilization of the actin cytoskeleton further increases this effect of protein kinase C. In contrast, ionophore-induced noradrenaline release originates from a pool of staurosporine-sensitive vesicles, and although activation of protein kinase C increases release from this pool, DNAase I has no effect and also does not change the effect of protein kinase C. The results support the existence of two functionally distinct pools of secretory vesicles in noradrenergic CNS nerve terminals, which are regulated in distinct ways by protein kinase C and the actin cytoskeleton.  相似文献   

18.
Abstract: In vivo microdialysis was used in conjunction with a novel dual-label preloading method to monitor changes in extracellular levels of γ-aminobutyric acid (GABA) and glutamate due to N -methyl- d -aspartate (NMDA) infusion in the striatum of conscious, unrestrained rats. [14C]GABA and [3H]glutamate were applied in the dialysis stream for a preloading period of 30 min, after which dialysis perfusion was continued for up to 6 h and dialysate samples were collected for analysis by liquid scintillation spectrometry. NMDA (300 μ M in the dialysate) caused significant rises in both 14C and 3H content measured in the dialysates, the majority of which remained associated with the preloaded GABA and glutamate, respectively. The NMDA-evoked release of both GABA and glutamate was blocked by the specific NMDA receptor antagonist 3-[(±)-2-carboxypiperazin-4-yl]propyl-1-phosphonic acid (CPP), indicating that the response was receptor mediated. The NMDA-stimulated release of glutamate was also totally abolished by concomitant application of the adenosine agonist 2-chloroadenosine or by prior frontal decortication. However, these two treatments caused little change in NMDA-evoked GABA release. These results show that NMDA causes release of GABA from the striatum in vivo by an NMDA receptor-mediated mechanism and that the majority of this release is not secondary to glutamate release from terminals of the corticostriate pathway. In addition, they confirm the results of previous studies investigating the effect of NMDA on endogenous glutamate release.  相似文献   

19.
We have assessed the role of synapsins in catecholamine release by comparing the properties of exocytosis in adrenal chromaffin cells from wild-type and synapsin triple knock-out (TKO) mice. Brief depolarizations led to a greater amount of catecholamine release in chromaffin cells from TKO mice in comparison to chromaffin cells from wild-type mice. This increase in catecholamine release was due to an increased number of exocytotic events, while the properties of individual quanta of released catecholamine were unchanged. Barium ions produced similar amounts of catecholamine release from TKO and wild-type chromaffin cells, suggesting that the reserve pool of chromaffin granules is unchanged following loss of synapsins. Because expression of synapsin IIa in TKO chromaffin cells rescued the defect in depolarization-induced exocytosis, the TKO phenotype apparently results from loss of synapsin IIa. We conclude that synapsin IIa serves as a negative regulator of catecholamine release and that this protein influences exocytosis from a readily releasable pool of chromaffin granules. Further, because these defects in catecholamine release are different from those observed for glutamate and GABA release in TKO mice, we conclude that the functions of synapsins differ for vesicles containing different types of neurotransmitters.  相似文献   

20.
Neuronal growth cones isolated in bulk from neonatal rat forebrain have uptake and K(+)-stimulated release mechanisms for gamma-aminobutyric acid (GABA). Up to and including postnatal day 5, the K(+)-stimulated release of [3H]GABA and endogenous GABA is Ca2+ independent. At these ages, isolated growth cones neither contain synaptic vesicles nor stain for synaptic vesicle antigens. Here we examined the possibility that the release mechanism underlying Ca2(+)-independent GABA release from isolated growth cones is by reversal of the plasma membrane GABA transporter. The effects of two GABA transporter inhibitors, nipecotic acid and an analogue of nipecotic acid, SKF 89976-A, on K(+)-stimulated release of [3H]GABA from superfused growth cones were examined. Nipecotic acid both stimulated basal [3H]GABA release and enhanced K(+)-stimulated release of [3H]GABA, which indicates that this agent can stimulate GABA release and is, therefore, not a useful inhibitor with which to test the role of the GABA transporter in K(+)-stimulated GABA release from growth cones. In contrast, SKF 89976-A profoundly depressed both basal and K(+)-stimulated [3H]GABA release. This occurred at similar concentrations at which uptake was blocked. These observations provide evidence for a major role of the GABA transporter in GABA release from neuronal growth cones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号