首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A stoichiometric equation has been derived which describes the interrelations among the various products and biomass in fermentations of butyric acid bacteria. The derivation of the equation is based on an assumed ATP yield, two biological regularities, and the biochemistry of product formation of the fermentations. The equation obeys the constraints imposed on growth and product formation by thermodynamics and the biochemical topology. The validity of the equation is tested using a variety of fermentation data from the literature. The uses, improvements, limitations, and extensions of the equation are also discussed in detail. For example, the fermentation equation is used to calculate the maximal possible yields of the main fermentation products.  相似文献   

3.
4.
A procedure for measuring the rate of heat production from a fermentation has been developed. The method is based on measuring the rate of temperature rise of the fermentation broth resulting from metabolism, when the temperature controller is turned off. The heat accumulation measured in this manner is then corrected for heat losses and gains. A sensitive thermistor is used to follow the temperature rise with time. This procedure is shown to be as accurate as previous methods but much simpler in execution. Using this technique, the rate of heat production during metabolism was found to correlate with the rate of oxygen consumption. Experiments were performed using bacteria (E. coli and B. subtilis), a yeast (C. intermedia), and a mold (A. niger). The substrates investigated included glucose, molasses, and soy bean meal. The proportionality constant for the correlation is independent of the growth rate, slightly dependent on the substrate, and possibly dependent on the type of organism growth. This correlation has considerable potential for predicting heat evolution from the metabolism of microorganisms on simple or complex substrates and providing quantitative parameters necessary for heat removal calculations.  相似文献   

5.
A computer model is described which is capable of predicting changes in cell composition, cell size, cell shape, and the timing of chromosome synthesis in response to changes in external glucose limitation. The model is constructed primarily from information on unrestricted growth in glucose minimal medium. The ability of the model to make reasonable quantitative predictions under glucose-limitation is a test of the plausibility of the basic biochemical mechanisms included in the model. Such a model should be of use in differentiating among competing hypotheses for biological mechanisms and in suggesting as yet unobserved phenomena. The last two points are illustrated with the testing of a mechanism for the control of the initiation of DNA synthesis and predictions on cell-width variations during the division cycle.  相似文献   

6.
7.
Summary The amino acid producing bacterium Corynebacterium glutamicum accumulated lactate, succinate and acetate under oxygen-limited growth conditions. Significant restructuring of carbon flux through the central metabolic pathways occurred with a notable decrease in pentose pathway flux and the operation of the TCA cycle in a reductive mode. Simultaneous consumption of residual sugar and organic acids took place when oxygen sufficient conditions were restored though amino acids yields were significantly perturbed.  相似文献   

8.
Steam-sterilizable membrane probes for monitoring the dissolved oxygen level in fermentors, or the oxygen content of gas streams, are described. The probes have a silver cathode, a lead anode, and an acetate buffer as an electrolyte. The membrane is Teflon. The current output of the probes in the absence of oxygen is negligible.  相似文献   

9.
Material and energy balances for fermentation processes are developed based on the facts that the heat of reaction per electron transferred to oxygen for a wide variety of organic molecules, the number of available electrons per carbon atom in biomass, and the weight fraction carbon in biomass are relatively constant. Mass-energy balance equations are developed which relate the biomass energetic yield coefficient to sets of variables which may be determined experimentally. Organic substrate consumption, biomass production, oxygen consumption, carbon dioxide production, heat evolution, and nitrogen consumption are considered as measured variables. Application of the balances using direct and indirect methods of yield coefficient estimation is illustrated using experimental results from the literature. Product formation is included in the balance equations and the effect of product formation on biomass yield estimates is examined. Application of mass-energy balances in the optimal operation of continuous single-cell protein production facilities is examined, and the variation of optimal operating conditions with changes in yield are illustrated for methanol as organic substrate.  相似文献   

10.
Hybridomas are finding increased use for the production of a wide variety of monoclonal antibodies. Understanding the roles of physiological and environmental factors on the growth and metabolism of mammalian cells is a prerequisite for the development of rational scale-up procedures. An SP2/0-derived mouse hybridoma has been employed in the present work as a model system for hybridoma suspension culture. In preliminary shake flask studies to determine the effect of glucose and glutaminE, it was found that the specific growth rate, the glucose and glutamine metabolic quotients, and the cumulative specific antibody production rate were independent of glucose concentration over the range commonly employed in cell cultures. Only the specific rate of glutamine uptake was found to depend on glutamine concentration. The cells were grown in continuous culture at constant pH and oxygen concentration at a variety of dilution rates. Specific substrate consumption rates and product formation rates were determined from the steady state concentrations. The specific glucose uptake rate deviated from the maintenance energy model(1) at low specific growth rates, probably due to changes in the metabolic pathways of the cells. Antibody production was not growth-associated; and higher specific antibody production rates were obtained at lower specific growth rates. The effect of pH on the metabolic quotients was also determined. An optimum in viable cell concentration was obtained between pH 7.1 and 7.4. The viable cell number and viability decreased dramatically at pH 6.8. At pH 7.7 the viable cell concentration initially decreased, but then recovered to values typical of pH 7.1-7.4. Higher specific nutrient consumption rates were found at the extreme pH values; however, glucose consumption was inhibited at low pH. The pH history also influenced the behavior at a given pH. Higher antibody metabolic quotients were obtained at the extreme pH values. Together with the effect of specific growth rate, this suggests higher antibody production under environmental or nutritional stress.  相似文献   

11.
Hydrodynamic phenomena in microcarrier cultures are investigated with regard to the development of improved reactor designs for large-scale operations. New concepts and theoretical models that describe new data as well as previously published data are presented.  相似文献   

12.
A new approach to preparative organic synthesis in aqueous-organic systems is suggested. It is based on the idea that the enzymatic process is carried out in a biphasic system "water-water-immiscible organic solvent." Thereby the enzyme is localized in the aqueous phase-this eliminates the traditional problem of stabilizing the enzymes against inactivation by a nonaqueous solvent. Hence, in contrast to the commonly used combinations "water-water-miscible organic solvent," in the suggested system the content of water may be infinitely low. This allows one to dramatically shift the equilibrium of the reactions forming water as a reaction product (synthesis of esters and amides, polymerization of amino acids, sugars and nucleotides, dehydration reactions, etc.) toward the products. The fact that the system consists of two phases provides another very important sources for an equilibrium shift, i.e., free energies of the transfer of a reagent from one phase to the other. Equations are derived describing the dependence of the equilibrium constant in a biphasic system on the ratio of the volumes of the aqueous and nonaqueous phases and the partition coefficients of the reagents between the phases. The approach has been experimentally verified with the synthesis of N-acetyl-L-tryptophan ethyl ester from the respective alcohol and acid. Porous glass was impregnated with aqueous buffer solution of chymotrypsin and suspended in chloroform containing N-acetyl-L-tryptophan and ethanol. In water (no organic phase) the yield of the ester is about 0.01%, whereas in this biphasic system it is practically 100%. The idea is applicable to a great number of preparative enzymatic reactions.  相似文献   

13.
Using Cudrania tricuspidata cells as model plant cells which have high sensitivity to hydrodynamic stress, technological problems in the cultivation of the plant cells at high density were investigated. Using "shake" flasks on a reciprocal shaker and Erlenmeyer flasks on a rotary shaker and with a high supply of oxygen in order to obtain high cell densities in shaken cultures, particle breakdown and damage to the largest cell aggregate group (above 1981 microm in diameter) occurred and normal cell growth became impeded. The mass-transfer coefficient (K) for a model solid-liquid system (beta-naphthol particles and water) in place of a system of plant cells and a liquid medium was proposed as an intensity index of hydrodynamic stress effects on plant cells in suspension cultures under various conditions in the bioreactor systems. Normal cell growth was obtained under culture conditions for K values less than about 4.4 x 10(-3) cm/sec. The characteristics of various bioreactors used until now were investigated by considering the three main technological factors (capacity of oxygen supply, intensity of hydrodynamic stress effects on plant cells, and intensity of culture broth mixing and air-bubble dispersion). The most suitable bioreactor for culturing plant cells at high density was a jar fermentor with a modified paddle-type impeller (J-M). The yield of cell mass in the 10-liter J-M (working volume 5 liter) was about 30 g dry weight per liter of medium.  相似文献   

14.
A 3-liter culture vessel has been developed for the growth of animal cells in suspension at controlled pH and dissolved oxygen partial pressure (pO(2)). The culture technique allows metabolically produced CO(2) to be measured; provision can be made to control the dissolved CO(2) partial pressure. In cultures containing a low serum concentration, gas sparging to control pO(2) was found to cause cell damage. This could be prevented by increasing the serum concentration to 10%, or by adding 0.02% of the surface-active polymer Pluronic F68. The growth of mouse LS cells in batch culture without pO(2) control was found to be limited by the availability of oxygen. Maximum viable cell populations were obtained when dissolved pO(2) was controlled at values within the range 40-100 mm Hg.  相似文献   

15.
Streptomyces peucetius var. caesius, obtained from S. peucetius, the daunomycin producing microorganism, by mutagenic treatment, differs from the parent culture by the color of the vegetative and aerial mycelia and by its antibiotic producing ability. S. peucetius var. caesius accumulates adriamycin in submerged and aerated culture on a medium containing glucose, brewer's yeast, and inorganic salts both in shake flasks and in stirred fermenters. Isolation of the product is performed by solvent extraction, chromatography on buffered cellulose columns, and crystallization as the hydrochloride. The new antitumor agent, adriamycin, is the 14-hydroxy derivative of daunomycin.  相似文献   

16.
17.
Multienzyme reaction systems with simultaneous coenzyme regeneration have been investigated in a continuously operated membrane reactor at bench scale. NAD(H) covalently bound to polyethylene glycol with a molecular weight of 10(4) [PEG-10,000-NAD(H)] was used as coenzyme. It could be retained in the membrane reactor together with the enzymes. L-leucine dehydrogenase (LEUDH) was used as catalyst for the reductive amination of alpha-ketoisocaproate (2-oxo-4-methylpentanoic acid) to L-leucine. Formate dehydrogenase (FDH) was used for the regeneration of NADH. Kinetic experiments were carried out to obtain data which could be used in a kinetic model in order to predict the performance of an enzyme membrane reactor for the continuous production of L-leucine. The kinetic constants V(max) and k(m) of the enzymes are all in the same range regardless of whether native NAD(H) or PEG-10,000-NAD(H) is used as coenzyme. L-leucine was produced continuously out of alpha-ketoisocaproate for 48 days; a maximal conversion of 99.7% was reached. The space-time yield was 324 mmol/L day (or 42.5 g/L day).  相似文献   

18.
Saccharomyces cerevisiae cells, Kluyveromyces marxianus cells, inulase, glucose oxidase, chloroplasts, and mitochondria were immobilized in calcium alginate gels. Ethanol production from glucose solutions by an immobilized preparation of S. cerevisiae was demonstrated over a total of twenty-three days, and the half-life of such a preparation was shown to be about ten days. Immobilized K. marxianus, inulase, and glucose oxidase preparations were used to demonstrate the porosity and retraining properties of calcium alginate gels. Calcium alginate-immobilized chloroplasts were shown to perform the Hill reaction. Some experiments with immobilized mitochondria are reported.  相似文献   

19.
The rapid conversion of cholesterol to cholestenone by Nocardia in the presence of high proportions of water-immiscible solvent has been demonstrated. At high agitator speeds, the reaction rate was not limited by the rates of transfer of oxygen or cholesterol to the microorganisms. Using 100 g of thawed cells in 200 ml of carbon tetrachloride containing 16% (w/v) cholesterol, at 20 degrees C cholestenone was formed at 7 g/hr. Cells could be separated easily from the organic solvent and reused. After 7 runs (69 hr) the reaction rate had fallen only to half the value for the first run.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号