首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new strain of yellow‐green algae (Xanthophyceae, Heterokonta), tentatively named Heterococcus sp. DN1 (UTEX accession number UTEX ZZ885), was discovered among snow fields in the Rocky Mountains. Axenic cultures of H. sp. DN1 were isolated and their cellular morphology, growth, and composition of lipids were characterized. H. sp. DN1 was found to grow at temperatures approaching freezing to accumulate large intracellular stores of lipids. H. sp. DN1 produces the highest quantity of lipids when grown undisturbed with high light in low temperatures. Of particular interest was the accumulation of eicosapentaenoic acid, known to be important for human nutrition, and palmitoleic acid, known to improve biodiesel feedstock properties. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:853–861, 2013  相似文献   

2.
The behavioral strategies evolved by insect parasitoids to optimize their foraging efforts have been the subject of many theoretical and empirical studies. However, the effects competition may have on these strategies, especially for species that do not engage in antagonistic behaviors, have received little attention. The objective of this study was to evaluate the effects of intraspecific and interspecific competition on patch exploitation strategies by two non‐aggressive species, Trichogramma pintoi Voegelé and Trichogramma minutum Riley (Hymenoptera: Trichogrammatidae), both generalist egg parasitoids. We analyzed the patch residence times of females, their patch‐leaving mechanisms, and the sex allocation of their progeny while foraging either alone, with an intraspecific competitor, or with an interspecific competitor. To some extent, each species responded differently to the presence of a competitor in the patch. Trichogramma pintoi females did not change their patch‐leaving mechanisms in response to competition and behaved as if under an exploitative competition regime, whereas T. minutum females did change their patch‐leaving mechanisms in response to competition and remained longer in the host patch than expected. Antennal rejection, and not oviposition, was the proximate behavioral mechanism underlying patch‐leaving decisions by both species. Neither species adjusted the sex allocation of their progeny in response to competition. These results indicate that the effects of competition differ even among closely related parasitoid species.  相似文献   

3.
The dispersal ability of plants is a major factor driving ecological responses to global change. In wind‐dispersed plant species, non‐random seed release in relation to wind speeds has been identified as a major determinant of dispersal distances. However, little information is available about the costs and benefits of non‐random abscission and the consequences of timing for dispersal distances. We asked: 1) to what extent is non‐random abscission able to promote long‐distance dispersal and what is the effect of potentially increased pre‐dispersal risk costs? 2) Which meteorological factors and respective timescales are important for maximizing dispersal? These questions were addressed by combining a mechanistic modelling approach and field data collection for herbaceous wind‐dispersed species. Model optimization with a dynamic dispersal approach using measured hourly wind speed showed that plants can increase long‐distance dispersal by developing a hard wind speed threshold below which no seeds are released. At the same time, increased risk costs limit the possibilities for dispersal distance gain and reduce the optimum level of the wind speed threshold, in our case (under representative Dutch meteorological conditions) to a threshold of 5–6 m s–1. The frequency and predictability (auto‐correlation in time) of pre‐dispersal seed‐loss had a major impact on optimal non‐random abscission functions and resulting dispersal distances. We observed a similar, but more gradual, bias towards higher wind speeds in six out of seven wind‐dispersed species under natural conditions. This confirmed that non‐random abscission exists in many species and that, under local Dutch meteorological conditions, abscission was biased towards winds exceeding 5–6 m s–1. We conclude that timing of seed release can vastly enhance dispersal distances in wind‐dispersed species, but increased risk costs may greatly limit the benefits of selecting wind conditions for long‐distance dispersal, leading to moderate seed abscission thresholds, depending on local meteorological conditions and disturbances.  相似文献   

4.
With different prevalence in different regions, radio frequency (RF) electromagnetic fields (EMF) are widely used for therapeutic tissue heating. Although short‐wave diathermy (27.12 MHz) is the most popular treatment modality, quantitative data on patient's exposure have been lacking. By numerical simulation with the numerical anatomical model NORMAN, intracorporal distributions of specific absorption rates (SAR) were investigated for different treatment scenarios and applicators. Quantitative data are provided for exposures of target treatment areas as well as for vulnerable regions such as the eye lenses, central nervous system, and testes. Different applicators and distances were investigated. Capacitive and inductive applicators exhibit quite a different heating efficiency. It could be shown that for the same output power therapeutic heat deposition can vary by almost one order of magnitude. By mimicking therapist's practice to use patient's heat perception as an indicator for output power setting, numerical data were elaborated demonstrating that muscle tissue exposures may be several times higher for inductive than for capacitive applicators. Presented quantitative data serve as a guide for power adjustment preventing relevant overexposures without compromising therapy; they also provide a basis for estimating target tissue heat load and developing therapeutic guidelines. Bioelectromagnetics 31:12–19, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
6.
7.
8.
9.
10.
11.
Introduction – Silybin, a standardised extract of flavanolignans from the seeds of Silybum marianum, has been used for centuries as a natural remedy in the treatment of hepatitis and cirrhosis. The higher yield of silybin by using more efficient extraction technique is of particular interest in the herbal products manufacture. Objective – To systematically investigate the important factors of enzyme‐assisted extraction of flavanolignans from the seeds of Silybum marianum to enhance the extraction yield of silybin. Methodology – The important factors of enzyme‐assisted extraction were optimised by employing Box–Behnken design with the aid of the orthogonal array design (OAD) OA8 (27). The effects of enzyme incubation temperature (EIT), the pH of enzyme solution (PES) and the size of seeds (SS) on the yield of silybin were visualised as three‐dimensional response surface and contour plots. Results – The predictive yield was 24.6 mg/g defatted seeds under the optimum enzymolysis conditions (EIT 40°C, PES 4.5 and SS 7003 μm). The coefficient of the model was r2 > 0.97 (n = 15). The actual yield of silybin was 24.81 ± 1.93 mg/g defatted seeds, higher by 138 and 123.6% than that from ethanol extraction in this study and in the previous literature, respectively. IR spectra and HPLC of the extracts by EAE were in agreement with those from ethanol extraction. SEM and TEM pictures of defatted seeds by variant extractions demonstrate that the extraction of silybin depends on the destruction of cell walls. Conclusion – The results suggest that EAE is a promising alternative for the extraction of silybin by the use of traditional ethanol extraction. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
13.
14.
15.
Deserts shrubs are well known to facilitate vegetation aggregation, mostly through seed trapping, and stress amelioration during and after plant establishment. Because vegetation aggregation effects are a by‐product of shrub presence, beneficiary species may not only be native, but also exotic. However, despite the high risk that exotic invasive species pose to ecosystem services, little is known of the role of desert shrubs on plant invasions. We assessed the influence of two shrub species on the non‐dormant soil seed bank (i.e. the number of seeds that readily germinate with sufficient water availability) of an invasive annual grass (Schismus barbatus) and of coexisting native species in a central‐northern Monte Desert (Argentina). Soil samples were collected beneath the canopies of two dominant shrub species (Bulnesia retama and Larrea divaricata) and in open spaces (i.e. intercanopies) in May 2001. Overall, the density of germinated seedlings of Schismus and that of the native species were negatively associated across microsite types. Schismus density was similar to that of all native species pooled together (mostly annuals), and was highest in Larrea samples (with no significant differences between Bulnesia and intercanopies). On the contrary, the density of all native species pooled together was highest in Bulnesia samples. Our results suggest that shrubs may contribute to plant invasions in our study system but, most importantly, they further illustrate that this influence can be species specific. Further research is needed to assess the relative importance of in situ seed production (and survival) and seed redistribution on soil seed bank spatial patterns.  相似文献   

16.
Abstract. The use of Generalized Linear Models (GLM) in vegetation analysis has been advocated to accommodate complex species response curves. This paper investigates the potential advantages of using classification and regression trees (CART), a recursive partitioning method that is free of distributional assumptions. We used multiple logistic regression (a form of GLM) and CART to predict the distribution of three major oak species in California. We compared two types of model: polynomial logistic regression models optimized to account for non‐linearity and factor interactions, and simple CART‐models. Each type of model was developed using learning data sets of 2085 and 410 sample cases, and assessed on test sets containing 2016 and 3691 cases respectively. The responses of the three species to environmental gradients were varied and often non‐homogeneous or context dependent. We tested the methods for predictive accuracy: CART‐models performed significantly better than our polynomial logistic regression models in four of the six cases considered, and as well in the two remaining cases. CART also showed a superior ability to detect factor interactions. Insight gained from CART‐models then helped develop improved parametric models. Although the probabilistic form of logistic regression results is more adapted to test theories about species responses to environmental gradients, we found that CART‐models are intuitive, easy to develop and interpret, and constitute a valuable tool for modeling species distributions.  相似文献   

17.
Microalgae represent one of the most promising groups of candidate organisms for replacing fossil fuels with contemporary primary production as a renewable source of energy. Algae can produce many times more biomass per unit area than terrestrial crop plants, easing the competing demands for land with food crops and native ecosystems. However, several aspects of algal biology present unique challenges to the industrial‐scale aquaculture of photosynthetic microorganisms. These include high susceptibility to invading aquatic consumers and weeds, as well as prodigious requirements for nutrients that may compete with the fertiliser demands of other crops. Most research on algal biofuel technologies approaches these problems from a cellular or genetic perspective, attempting either to engineer or select algal strains with particular traits. However, inherent functional trade‐offs may limit the capacity of genetic selection or synthetic biology to simultaneously optimise multiple functional traits for biofuel productivity and resilience. We argue that a community engineering approach that manages microalgal diversity, species composition and environmental conditions may lead to more robust and productive biofuel ecosystems. We review evidence for trade‐offs, challenges and opportunities in algal biofuel cultivation with a goal of guiding research towards intensifying bioenergy production using established principles of community and ecosystem ecology.  相似文献   

18.
19.
Invasive plants that displace native floral communities can cause changes to associated invertebrate species assemblages. Using a mini‐review of the literature and our own data we add to the still considerable debate about the most effective methods for testing community‐level impacts by invasive species. In endangered saltmarshes of southeast Australia, the non‐native rush Juncus acutus L. is displacing its native congener J. kraussii Hochst., with concurrent changes to floral and faunal assemblages. In two coastal saltmarshes, we tested the hypothesis that the ability to detect differences in the invertebrate assemblage associated with these congeneric rushes depends on the microhabitat of the plant sampled. We used three sampling methods, each targeting specific microhabitats: sweep netting of the plant stems, vacuum sampling of the plant tussock, and vacuum sampling of the ground directly below the plants. Over 3800 individuals and 92 morphospecies were collected across four main taxa: gastropods, crustaceans, hexapods and arachnids. Detection of differences in invertebrate density, richness and composition associated with native compared with non‐native rushes was dependent on the microhabitat sampled and these differences were spatially variable. For example, at one saltmarsh the stems and tussock of J. acutus had a lower density and richness of total invertebrates and hexapods than those of the native J. kraussii. In contrast, crustaceans on the ground were in greater abundance below J. acutus than J. kraussii. This study demonstrates that on occasions where overall differences in the assemblage are not detected between species, differences may become apparent when targeting different microhabitats of the plant. In addition, separately targeting multiple microhabitats likely leads to a greater probability of detecting impacts of invasion. Comparing the invertebrate assemblage without differentiating between or sampling an array of microhabitats can fail to determine the impact of invasive species. These results highlight that a combination of methods targeting different microhabitats is important for detecting differences within the invertebrate community, even for phylogenetically related species.  相似文献   

20.
Cytochromes P450 (P450) largely remain to be characterized in great apes. Comparative immunochemical detection of drug metabolizing forms of P450s 1A, 2A, 2B, 2C, 2D, 2E, 2J, 3A, 4A, and 4F in liver microsomes from chimpanzees, gorillas, orangutans, gibbons, cynomolgus and rhesus macaques, and common marmosets were carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号