首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies identified three begomoviruses infecting soybean and bean crops in northwestern (NW) Argentina, bean golden mosaic virus (BGMV), a virus with high capsid protein identity with Sida mottle virus (SiMoV) and a possible new viral species (isolate A). Analysis of complete DNA‐A sequences confirmed that isolate A represents a new viral species for which the authors propose the name soybean blistering mosaic virus (SbBMV), whereas the SiMoV‐like virus is actually an isolate of tomato yellow spot virus (ToYSV). Molecular hybridisation‐based detection of the three begomoviruses was accomplished using a general probe obtained by mixing full‐length DNA‐A clones of the three begomoviruses and specific probes comprising part of the common region of each viral genome. These probes were used to test samples collected in NW Argentina from 2004 through 2007. Fifty‐three percent of the bean samples were infected with BGMV, 11.5% with ToYSV and 9% with SbBMV. For soybean samples, 33% were infected with SbBMV and 18% with ToYSV. BGMV was not detected in soybean. ToYSV was also detected in the wild species Abutilon theophrasti.  相似文献   

2.
3.
4.
Begomoviruses (whitefly‐transmitted, single‐stranded DNA plant viruses) are among the most damaging pathogens causing epidemics in economically important crops worldwide. Besides cultivated plants, many weed and wild hosts act as virus reservoirs where recombination may occur, resulting in new species. The aim of this study was to further characterise the diversity of begomoviruses infecting two major weed genera, Sida and Leonurus. Total DNA was extracted from samples collected in the states of Rio Grande do Sul, Paraná and Mato Grosso do Sul during the years 2009–2011. Viral genomes were enriched by rolling circle amplification (RCA), linearised into unit length genomes using various restriction enzymes, cloned and sequenced. A total of 78 clones were obtained: 37 clones from Sida spp. plants and 41 clones from Leonurus sibiricus plants. Sequence analysis indicated the presence of six bipartite begomovirus species and two alphasatellites. In Sida spp. plants we found Sida micrantha mosaic virus (SiMMV), Euphorbia yellow mosaic virus (EuYMV), and three isolates that represent new species, for which the following names are proposed: Sida chlorotic mottle virus (SiCMoV), Sida bright yellow mosaic virus (SiBYMV) and Sida golden yellow spot virus (SiGYSV), an Old World‐like begomovirus. L. sibiricus plants had a lower diversity of begomoviruses compared to Sida spp., with only Tomato yellow spot virus (ToYSV) and EuYMV (for the first time detected infecting plants of the genus Leonurus) detected. Two satellite DNA molecules were found: Euphorbia yellow mosaic alphasatellite, for the first time detected infecting plants of the genus Sida, and a new alphasatellite associated with ToYSV in L. sibiricus. These results constitute further evidence of the high species diversity of begomoviruses in non‐cultivated hosts, particularly Sida spp.  相似文献   

5.
6.
A one‐step multiplex RT‐PCR method has been developed for the simultaneous detection of four viruses frequently occurring in tobacco (Cucumber mosaic virus, Tobacco mosaic virus, Tobacco etch virus and Potato virus Y). Four sets of specific primers were designed to work with the same reaction reagents and cycling conditions, resulting in four distinguishable amplicons representative of the four viruses independently. This one‐step multiplex RT‐PCR is consistently specific using different combinations of virus RNA as templates, and no non‐specific band was observed. It has high sensitivity compared to single RT‐PCR. Moreover, field samples in China can be tested by this method for virus detection. Our results show that one‐step multiplex RT‐PCR is a high‐throughput, specific, sensitive method for tobacco virus detection.  相似文献   

7.
8.
A broad diversity of arthropod‐borne viruses (arboviruses) of global health concern are endemic to East Africa, yet most surveillance efforts are limited to just a few key viral pathogens. Additionally, estimates of arbovirus diversity in the tropics are likely to be underestimated as their discovery has lagged significantly over past decades due to limitations in fast and sensitive arbovirus identification methods. Here, we developed a nearly pan‐arbovirus detection assay that uses high‐resolution melting (HRM) analysis of RT–PCR products from highly multiplexed assays to differentiate broad diversities of arboviruses. We differentiated 15 viral culture controls and seven additional synthetic viral DNA sequence controls, within Flavivirus, Alphavirus, Nairovirus, Phlebovirus, Orthobunyavirus and Thogotovirus genera. Among Bunyamwera, sindbis, dengue and Thogoto virus serial dilutions, detection by multiplex RT–PCR‐HRM was comparable to the gold standard Vero cell plaque assays. We applied our low‐cost method for enhanced broad‐range pathogen surveillance from mosquito samples collected in Kenya and identified diverse insect‐specific viruses, including a new clade in anopheline mosquitoes, and Wesselsbron virus, an arbovirus that can cause viral haemorrhagic fever in humans and has not previously been isolated in Kenya, in Culex spp. and Anopheles coustani mosquitoes. Our findings demonstrate how multiplex RT–PCR‐HRM can identify novel viral diversities and potential disease threats that may not be included in pathogen detection panels of routine surveillance efforts. This approach can be adapted to other pathogens to enhance disease surveillance and pathogen discovery efforts, as well as the study of pathogen diversity and viral evolutionary ecology.  相似文献   

9.
10.
Viral Encephalopathy and Retinopathy (VER), is caused by a nodavirus included within the Betanodavirus genus of the Nodaviridae family. This disease affects more than 30 marine fish species worldwide and has been a major obstacle in the aquaculture industry; control of the disease is based on virus detection, essentially in carrier specimens. This study describes a real time PCR procedure for viral nervous necrosis virus detection from several organs of sea bass, Senegalese sole, and gilt‐head sea bream, from fish displaying either clinical symptoms or asymptomatic cases. The sensitivity of this technique was about 106‐fold higher than that of the conventional RT‐PCR. The newly designed primers detected nodavirus isolates belonging to the RGNNV and SJNNV genotypes.  相似文献   

11.
A novel negative‐stranded (ns) RNA virus associated with a severe citrus disease reported more than 80 years ago has been identified. Transmission electron microscopy showed that this novel virus, tentatively named citrus concave gum‐associated virus, is flexuous and non‐enveloped. Notwithstanding, its two genomic RNAs share structural features with members of the genus Phlebovirus, which are enveloped arthropod‐transmitted viruses infecting mammals, and with a group of still unclassified phlebo‐like viruses mainly infecting arthropods. CCGaV genomic RNAs code for an RNA‐dependent RNA polymerase, a nucleocapsid protein and a putative movement protein showing structural and phylogenetic relationships with phlebo‐like viruses, phleboviruses and the unrelated ophioviruses, respectively, thus providing intriguing evidence of a modular genome evolution. Phylogenetic reconstructions identified an invertebrate‐restricted virus as the most likely ancestor of this virus, revealing that its adaptation to plants was independent from and possibly predated that of the other nsRNA plant viruses. These data are consistent with an evolutionary scenario in which trans‐kingdom adaptation occurred several times during the history of nsRNA viruses and followed different evolutionary pathways, in which genomic RNA segments were gained or lost. The need to create a new genus for this bipartite nsRNA virus and the impact of the rapid and specific detection methods developed here on citrus sanitation and certification are also discussed.  相似文献   

12.
Banana streak MY virus (BSMYV) is the causal agent of viral leaf streak disease of banana, which leads to considerable losses in banana production in most of the banana‐growing regions worldwide. Developing high‐throughput virus detection system is essential for managing viral diseases especially in vegetatively propagated crops like banana. In this study, viral‐associated protein (VAP) coded by ORF II of BSMYV was expressed in Escherichia coli, and polyclonal antibodies were raised against purified recombinant VAP (rVAP) fusion protein in rabbits. Specificity and sensitivity of resulting antibodies were tested in Western blot, immunosorbent electron microscopy (ISEM) and enzyme‐linked immunosorbent assays (ELISAs). In direct antigen‐coated (DAC)‐ELISA, antibodies reacted specifically to BSMYV in crude sap, up to 1 : 8000 dilutions, but not to healthy leaf extracts. Using this antiserum, an immunocapture polymerase chain reaction (IC‐PCR) assay was developed and compared with DAC‐ELISA. VAP antibody‐based IC‐PCR is highly specific and could differentiate episomal virus infection from the integrated endogenous BSV (eBSV) sequences. The recombinant antibodies were validated by testing with a large number of banana germplasm conserved in the field gene bank. Field samples collected during surveys and mother cultures used in tissue culture propagation suggest that antibodies generated against rVAP are sensitive and useful for large‐scale detection of BSMYV. To the best of our knowledge, this is the first report on the production of polyclonal antiserum against recombinant VAP of BSMYV and its suitability for serology‐based testing by ELISA and IC‐PCR. This VAP‐based immunodiagnosis can be applied in quarantine, germplasm exchange and certification programmes.  相似文献   

13.
14.
15.
An antigen‐coated plate enzyme‐linked immunosorbent assay (ACP‐ELISA) method was developed and validated for the detection of Bean leafroll virus (BLRV) and Pea enation mosaic virus (PEMV), two of the important viral pathogens of several legume crops. The coat protein (CP) gene of each of the viruses was bacterially expressed as a fusion protein containing an N‐terminal hexa‐histidine tag and used as an antigen to produce antisera in rabbits. The antiserum to BLRV could detect the virus in leaf samples in up to 1:1000 dilution, and the PEMV antiserum detected the homologous virus in leaf samples of dilutions up to 1:6400. No serological cross‐reactivity was observed between anti‐BLRV and anti‐PEMV sera. The ACP‐ELISA assays were then used for estimating the prevalence of these two viruses in alfalfa, pea and vetch over a three‐state area in the US Pacific Northwest over a 2‐year period and virus incidence was mapped. Availability of rapid and sensitive ELISA assays facilitate virus disease mapping efforts and screening germplasm for virus resistance.  相似文献   

16.
17.
  • 1 Neodiprion sertifer nucleopolyhedrovirus (NeseNPV) is widely used as a viral bio‐insecticide against larvae of the European pine sawfly N. sertifer (Geoff.) (Hymenoptera: Diprionidae), which is one of the most harmful defoliators of pines in Northern Europe. A major obstacle to studying this pathogenic virus in nature is the difficulty of confirming and quantifying the presence of NeseNPV.
  • 2 In the present study, we developed real‐time polymerase chain reaction (PCR) primers, based on the caspid gene 39 sequence, for the specific and quantitative detection of NeseNPV. The quantitative real‐time PCR (qPCR) assay can detect virus from any substrate tested, including different insect life stages (egg, larval, adult), pine foliage, and litter or ground vegetation. The reproducible detection limit for the real‐time assay is 0.013 pg of viral DNA (0.013×10?12 g), corresponding to 136 viral genomes or approximately one to seven virus occlusion bodies per sample.
  • 3 qPCR is a specific, quantitative, sensitive, reliable and flexible procedure, and is a good supplement to conventional microscopy‐ or bioassay‐based methods for detection of the virus. We have used qPCR to quantify the level of NeseNPV in samples collected in the field after aerial application of the virus, and demonstrated significantly higher virus levels in sawfly larvae from sprayed areas compared with unsprayed control areas 4 weeks after spraying.
  • 4 This qPCR assay can be used to determine important aspects of the biology of NeseNPV (e.g. virus levels in different insect life stages and in their microhabitats on pine foliage and in forest litter).
  相似文献   

18.
19.
Rubus yellow net virus (RYNV) infects Rubus species and cultivars worldwide and is an essential component of raspberry veinbanding mosaic (RVBMD), a virus disease complex that causes serious decline in plant vigour and productivity. The virus is transmitted, probably in a semi‐persistent manner, by the large raspberry aphid, Amphorophora idaei in Europe, and A. agathonica in North America. The particles of RYNV are bacilliform in shape and measure 80–150 × 25–30 nm, similar to those of badnaviruses. A1.7 kb fragment of the viral DNA was amplified by PCR and then directly sequenced. Analysis of this sequence suggests that RYNV is possibly a distinct species in the genus Badnavirus and is most closely related to Gooseberry vein banding associated virus (GVBAV) and Spiraea yellow leaf spot virus, two other badnaviruses described recently. Using the sequence derived from the PCR‐amplified viral DNA fragment, RYNV‐specific primers were designed and used in PCR to assay for RYNV in a range of Rubus germplasm infected with RYNV, with other unrelated viruses and virus‐like diseases found in Rubus, and in healthy plants. RYNV was detected in all glasshouse cultures of RYNV‐infected plants, whether alone or in complex infections with other viruses, but not from healthy Rubus plants, nor from plants infected with other viruses. It was also detected in field‐grown raspberry plants with and without symptoms of RVBMD and in raspberry plants infected with RYNV by viruliferous A. idaei. RYNV was also detected by PCR in A. idaei following access feeds on RYNV‐infected plants of 1 h or more. PCR failed to amplify DNA from gooseberry infected with GVBAV confirming the specificity of the RYNV analysis. PCR detection of RYNV in dormant raspberry buds allows assays to be made outside the natural growing season, providing a useful application for plant introduction and quarantine programmes.  相似文献   

20.
Begomoviruses and criniviruses, vectored by whiteflies (Bemisia tabaci), are important threats to crops worldwide. In recent years, the spread of cucurbit leaf crumple virus (CuLCrV), cucurbit yellow stunting disorder virus (CYSDV) and cucurbit chlorotic yellows virus (CCYV) on cucurbit crops has been reported to cause devastating crop losses in many regions of the world. In this study, a multiplex recombinase polymerase amplification (RPA) assay, an isothermal technique for rapid and simultaneous detection of DNA and RNA viruses CuLCrV, CYSDV and CCYV was developed. Highly specific and sensitive multiplex RPA primers for the coat protein region of these viruses were created and evaluated. The sensitivity of the multiplex RPA assay was examined using serially diluted plasmid containing the target regions. The results demonstrated that multiplex RPA primers have high sensitivity with a detection limit of a single copy of the viruses. The multiplex RPA primers were specific to the target as indicated by testing against other begomoviruses, potyviruses and an ilarvirus, and no nonspecific amplifications were noted. The primers simultaneously detected mixed infection of CCYV, CYSDV and CuLCrV in watermelon and squash crude extracts. This study is the first report of a multiplex RPA assay for simultaneous detection of mixed infection of DNA and RNA plant viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号