首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to establish the current scenario of aflatoxigenic fungal infection and aflatoxin contamination in sorghum seeds across India, 58 seed samples were collected from different agro-climatic regions. Among these, 67.2% samples were infected with Aspergillus spp. and 28% were found contaminated with aflatoxins ranging from 0.0 to 130?μg?kg?1. Greenhouse studies revealed no correlation between incidence of Aspergillus flavus and aflatoxin content, and its effect on seed quality parameters. Among the 37 A. flavus strains isolated, six were non-aflatoxigenic when analysed through cultural, TLC and ic-ELISA. Seed treatment with biocontrol agents (antagonistic Rhizobacteria and Trichoderma) suppressed the growth of A. flavus under laboratory and significantly enhanced seed quality variables under greenhouse conditions to a various extent. Field trials with selected biocontrol agents showed that talcum powder formulations of Pseudomonas putida Has-1/c, Bacillus spp. 3/a, Trichoderma asperellum M5 and T. asperellum T2 improved seedling emergence, % nutrient accumulation in plants, increased plant biomass and 1000 seed weight. Seeds harvested from treated plants showed significant increase in seed quality variables under laboratory and greenhouse conditions in comparison with control, but there was no significant difference in A. flavus infection and aflatoxin was completely absent in all treatments.  相似文献   

2.
Biological control of mycotoxigenic fungi using antagonistic microbes is a promising alternative to agricultural chemicals for postharvest storage. In this study, we evaluated rice‐derived bacterial strains to identify biocontrol agents to inhibit Aspergillus flavus in stored rice grains. Consequently, we obtained three potential biocontrol strains (Microbacterium testaceum KU313, Bacillus megaterium KU143 and Pseudomonas protegens AS15) from 26 tested strains that were prescreened from the 460 strains isolated from rice grains. The three selected strains proved to be effective biocontrol agents showing antifungal activity against A. flavus and good colonisation ability on rice grains, along with inhibition of the fungal growth and aflatoxin production. In particular, P. protegens AS15 greatly inhibited the aflatoxins produced by A. flavus on rice grains to 8.68 (percent aflatoxin reduction relative to control = 82.9%) and 18.05 (68.3 %) ng g?1 dry weight of rice grains, compared with the 50.89 and 56.97 ng g?1 dry weight of rice grains of the MgSO4 control at 1 and 2 weeks after inoculation, respectively. In addition, strain AS15 had a significant ability to not only degrade aflatoxin B1 (the most harmful aflatoxin), but also utilise the toxin for bacterial growth in a nutrient‐deficient medium. Therefore, the selected bacterial strains could be environmentally sound alternatives for the management of A. flavus and aflatoxin production by reducing the fungal damage to stored rice grains. This would also reduce the human and animal health hazards associated with the consumption of fungus‐contaminated rice grains. To our knowledge, this is the first report of the potential of the bacterial species M. testaceum and P. protegens as biocontrol agents for controlling aflatoxigenic A. flavus on stored rice grains.  相似文献   

3.
Aflatoxins produced by the fungus Aspergillus flavus are potent carcinogens and account for large monetary losses worldwide in peanuts, maize, and cottonseed. Biological control in which a nontoxigenic strain of A. flavus is applied to crops at high concentrations effectively reduces aflatoxins through competition with native aflatoxigenic populations. In this study, eight nontoxigenic strains of A. flavus belonging to different vegetative compatibility groups and differing in deletion patterns within the aflatoxin gene cluster were evaluated for their ability to reduce aflatoxin B1 when paired with eight aflatoxigenic strains on individual peanut seeds. Inoculation of wounded viable peanut seeds with conidia demonstrated that nontoxigenic strains differed in their ability to reduce aflatoxin B1. Reductions in aflatoxin B1 often exceeded expected reductions based on a 50:50 mixture of the two A. flavus strains, although one nontoxigenic strain significantly increased aflatoxin B1 when paired with an aflatoxigenic strain. Therefore, nontoxigenicity alone is insufficient for selecting a biocontrol agent and it is also necessary to test the effectiveness of a nontoxigenic strain against a variety of aflatoxigenic strains.  相似文献   

4.
In the present investigation, seven rhizobacteria and nine Trichoderma spp. were evaluated to suppress seed-borne mycotoxigenic fungi (Aspergillus flavus and Fusarium verticillioides) and mycotoxin (aflatoxin and fumonisin) and to improve planting value of maize. Under in vitro conditions, these beneficial microorganisms suppressed the growth of A. flavus and F. verticillioides to various extents. Bacillus sp. (Bsp 3/aM), Pseudomonas putida (Has 1/c), Trichoderma asperellum (M5) and T. asperellum (T2) exhibited the greatest antagonistic effect on seed-borne mycotoxigenic fungi, and subsequently reduced mycotoxin concentrations in seeds. Under greenhouse conditions, these four biocontrol strains were also found to increase root length, shoot length, % germination, vigour index, fresh weight and dry weight of seedlings. Considering their overall performances, strains Bsp 3/aM, Has 1/c, M5 and T2 were selected for field studies as microbial talcum formulations. Among the tested microbial formulations, strain Bsp 3/aM significantly increased yield by 9.4% and 6.2% over the control in two maize cultivars Hema and Pearl, respectively. Increased plant growth and yield was also correlated with nutrient uptake in both the tested cultivars. All microbial formulation recorded significantly (p ≤ 0.05) reduced A. flavus infection and aflatoxin contamination in harvested seeds. But, none of the microbial formulations were found significant (p ≤ 0.05) in reducing F. verticilliodes incidence and fumonisin contamination. Our findings indicate that these microbial antagonists indirectly improve host health by suppressing seed-borne incidence of mycotoxigenic fungi and directly by facilitating nutrient uptake, thereby revealing their potential as both biofertilisers and biopesticides for maize production.  相似文献   

5.
Pre- and post harvest aflatoxin contamination of groundnut caused by Aspergillus flavus is a major problem in the semi-arid tropics. Fluorescent Pseudomonas, Bacillus and Trichoderma spp. potentially antagonistic to A. flavus were isolated from the geocarposphere (pod-zone) of groundnut and used successfully for the control of pre-harvest groundnut seed infection by A. flavus. In greenhouse and field experiments, inoculation of selected antagonistic strains on groundnut resulted in significant reduction of seed infection by A. flavus, and it also reduced >50% of the A. flavus populations (as cfu) in the geocarposphere of groundnut.  相似文献   

6.
The antagonistic activity of Bacillus subtilis strain G1 was tested against various isolates of Aspergillus flavus in vitro. A talc-based powder formulation of B. subtilis strain G1 was prepared and evaluated to control A. flavus infection and aflatoxin B1 contamination in groundnut under greenhouse and field conditions. The results showed that B. subtilis strain G1 could inhibit the growth of all isolates of A. flavus tested in dual culture assay and the growth inhibition ranged from 93 to 100%. Results of greenhouse and field experiments indicated that B. subtilis strain G1 when applied to groundnut as seed treatment and soil application significantly suppressed A. flavus population in the soil, A. flavus infection and aflatoxin B1 content in kernels and increased the pod yield. These studies show that B. subtilis strain G1 has potential as a biocontrol agent for control of aflatoxin contamination in groundnut.  相似文献   

7.
Research on the aflatoxin problem in groundnut at ICRISAT   总被引:3,自引:0,他引:3  
Summary Aflatoxin contamination of groundnut is a serious problem in most groundnut producing countries and as such is given high research priority by the Groundnut Improvement Program of ICRISAT. Since 1979 we have concentrated on selecting cultivars resistant to seed invasion and colonization by toxigenicAspergillus flavus, and/or to aflatoxin production following invasion by the fungus. Resistance to invasion and colonization byA. flavus of rehydrated, mature seed has been found, and confirmed, in some cultivars. We have also screened several groundnut cultivars for seed resistance in the field, both under natural conditions and with the inoculum of the fungus added to the soil in the pod zone. Some cultivars with resistance to seed colonization also showed resistance to seed invasion byA. flavus. None of the cultivars tested has shown complete resistance to aflatoxin production but significant cultivar differences occurred in the amounts of aflatoxin produced in seeds inoculated with a toxigenic strain ofA. flavus.ICRISAT Journal Article No. JA-316  相似文献   

8.
Summary The effect of lithium on growth and aflatoxin production in chemically defined medium was studied on three aflatoxigenic strains of Asperigillus flavus group. The three strains used differed in their aflatoxin producing capacities. The possible mechanism of lithium induced stimulation of aflatoxin biosynthesis is discussed.  相似文献   

9.
Isolation of Bacterial Antagonists of Aspergillus flavus from Almonds   总被引:1,自引:0,他引:1  
Bacteria were isolated from California almond orchard samples to evaluate their potential antifungal activity against aflatoxin-producing Aspergillus flavus. Fungal populations from the same samples were examined to determine the incidence of aflatoxigenic Aspergillus species. Antagonistic activities of the isolated bacterial strains were screened against a nonaflatoxigenic nor mutant of A. flavus, which accumulates the pigmented aflatoxin precursor norsolorinic acid (NOR) under conditions conducive to aflatoxin production. Using solid and liquid media in coculture assays, 171 bacteria isolated from almond flowers, immature nut fruits, and mature nut fruits showed inhibition of A. flavus growth and/or inhibition of NOR accumulation. Bacterial isolates were further characterized for production of extracellular enzymes capable of hydrolyzing chitin or yeast cell walls. Molecular and physiological identification of the bacterial strains indicated that the predominant genera isolated were Bacillus, Pseudomonas, Ralstonia, and Burkholderia, as well as several plant-associated enteric and nonenteric bacteria. A set of 20 isolates was selected for further study based on their species identification, antifungal phenotypes, and extracellular enzyme production. Quantitative assays using these isolates in liquid coculture with a wild-type, aflatoxin-producing A. flavus strain showed that a number of strains completely inhibited fungal growth in three different media. These results indicate the potential for development of bacterial antagonists as biological control agents against aflatoxigenic aspergilli on almonds.  相似文献   

10.
Single nucleotide polymorphisms (SNPs) of genome sequences of eight Aspergillus flavus and seven Aspergillus oryzae strains were extracted with Mauve, a multiple-genome alignment programme. A phylogenetic analysis with sequences comprised of concatenated total SNPs by the unweighted pair group method with arithmetic mean (UPGMA) of MAFFT adequately separated them into three groups, A. flavus S-morphotype, A. flavus L-morphotype and A. oryzae. Divergence time inferred for A. flavus NRRL21882, the active agent of the biocontrol product Afla-Guard®, and S-morphotype was about 5·1 mya. Another biocontrol strain, A. flavus AF36, diverged from aflatoxigenic L-morphotype about 2·6–3·0 mya. Despite the close relatedness of A. oryzae to A. flavus, A. oryzae strains likely evolved from aflatoxigenic Aspergillus aflatoxiformans (=A. parvisclerotigenus). A survey of A. flavus populations implies that prior Afla-Guard® applications are associated with prevalence of NRRL21882-type isolates in Mississippi fields. In addition, a few NRRL21882 relatives were identified. A. flavus Og0222, a biocontrol ingredient of Aflasafe™, was verified as a NRRL21882-type strain, having identical sequence breakpoints that led to deletion of aflatoxin and cyclopiazonic acid gene clusters. A similar UPGMA analysis suggests that the occurrence of NRRL21882-type strains is a more recent event.  相似文献   

11.
Groundnut is commonly consumed in its roasted form by many Nigerians. This study was therefore conducted to determine the levels of aflatoxin in roasted groundnut retailed in south‐western Nigeria with a view to assessing the fitness of the processed nut for human consumption. The effects of roasting and de‐coating as alternative methods for reducing the ‘aflatoxin scare’ in the nut were further assessed on aflatoxigenic fungal load and aflatoxin content of the nuts. Forty‐eight samples of retailed raw and roasted groundnut were collected and assessed by mycological and thin‐layer chromatographic analysis for changes in aflatoxigenic fungal population and aflatoxin concentration, respectively. Consequently, 480 isolates of the Aspergillus section Flavi group, A. flavus L strain (= 410), A. tamarii (= 56), A. parasiticus (= 7) and A. parvisclerotigenus (= 7), were recovered from all samples. Aflatoxigenic isolates of A. flavus L strain (58.8%) had a significantly (P < 0.05) higher incidence than the non‐aflatoxigenic isolates (41.2%). Aflatoxins were detected in 43 (89.6%) of the samples. Approximately 25% of all samples exceeded the 20 ng/g limit for aflatoxin B1 (AFB1) adopted by the National Agency for Food and Drug Administration and Control while 83 and 79% of all samples contained AFB1 and total aflatoxins above the European Union limits of 2 and 4 ng/g, respectively. Aflatoxin concentrations in the raw and coated samples were as much as five times higher than those in the roasted and de‐coated nuts, respectively. However, no significant difference was recorded between aflatoxin levels in the coated and de‐coated samples. This study has shown that roasting of groundnut and testa removal (de‐coating) are effective processing interventions that can significantly lower aflatoxin quantities in the kernels, thus making it fit for human consumption.  相似文献   

12.

Aims

To investigate the effects of temperature and medium composition on growth/aflatoxin inhibitory activities of terpenoids gossypol, gossypolone and apogossypolone against Aspergillus flavus and A. parasiticus.

Methods and Results

The compounds were tested at a concentration of 100 μg ml?1 in a Czapek Dox (Czapek) agar medium at 25, 31 and 37°C. Increased incubation temperature marginally increased growth inhibition caused by these compounds, but reduced the aflatoxin inhibition effected by gossypol. Gossypolone and apogossypolone retained good aflatoxin inhibitory activity against A. flavus and A. parasiticus at higher incubation temperatures. However, increased temperature also significantly reduced aflatoxin production in control cultures. The effects of the terpenoids on fungal growth and aflatoxin production against the same fungi were also determined in Czapek, Czapek with a protein/amino acid addendum and yeast extract sucrose (YES) media. Growth of these fungi in the protein‐supplemented Czapek medium or in the YES medium greatly reduced the growth inhibition effects of the terpenoids. Apogossypolone displayed strong anti‐aflatoxigenic activity in the Czapek medium, but this activity was significantly reduced in the protein‐amended Czapek and YES media. Gossypol, which displayed little to no aflatoxin inhibitory activity in the Czapek medium, did yield significant anti‐aflatoxigenic activity in the YES medium.

Conclusions

Incubation temperature and media composition are important parameters involved in the regulation of aflatoxin production in A. flavus and A. parasiticus. These parameters also affect the potency of growth and aflatoxin inhibitory activities of these gossypol‐related compounds against aflatoxigenic fungi.

Significance and Impact of the Study

Studies utilizing gossypol‐related compounds as inhibitory agents of biological activities should be interpreted with caution due to compound interaction with multiple components of the test system, especially serum proteins.  相似文献   

13.
Aflatoxins in maize and peanuts remain a major cause of liver cancer and other human and animal health issues. The principal causal fungi are Aspergillus flavus and A. parasiticus. Relatively little attention has been paid to reducing aflatoxin formation before harvest. The most promising approach is biocontrol by competitive exclusion. This project aimed to demonstrate the efficacy of locally isolated strains of A. flavus for biocontrol of aflatoxin in maize in Thailand. After a rigorous process utilising molecular methods was used to select non-toxigenic A. flavus strains, field inoculum was produced by using hulled rice coated with A. flavus spores in molasses. Field experiments were conducted over two years in two districts, one of light sandy soil (Chokchai), the other a heavy, close textured, soil (Pakchong). Postharvest treatments representative of local practice were also undertaken. Crops 1 and 2 were not significantly contaminated with aflatoxin at the time of harvest, so any impact of biocontrol could not be assessed. However, wet shelling plus storage before drying resulted in increased aflatoxin contamination; biocontrol had no impact on this increase. In crops 3 and 4, biocontrol had a beneficial impact in some freshly harvested maize. Biocontrol treatments also significantly reduced aflatoxin contamination in samples from some treatments stored for two or four days after shelling, but had minimal effect in others. These experiments demonstrated that biocontrol can be highly effective in reducing aflatoxin contamination in maize in Thailand, both at harvest and during poor postharvest crop handling. However, results were inconsistent.  相似文献   

14.
Aflatoxins produced by Aspergillus flavus are potent carcinogens that contaminate agricultural crops. Recent efforts to reduce aflatoxin concentrations in crops have focused on biological control using nonaflatoxigenic A. flavus strains AF36 (=NRRL 18543) and NRRL 21882 (the active component of afla‐guard®). However, the evolutionary potential of these strains to remain nonaflatoxigenic in nature is unknown. To elucidate the underlying population processes that influence aflatoxigenicity, we examined patterns of linkage disequilibrium (LD) spanning 21 regions in the aflatoxin gene cluster of A. flavus. We show that recombination events are unevenly distributed across the cluster in A. flavus. Six distinct LD blocks separate late pathway genes aflE, aflM, aflN, aflG, aflL, aflI and aflO, and there is no discernable evidence of recombination among early pathway genes aflA, aflB, aflC, aflD, aflR and aflS. The discordance in phylogenies inferred for the aflW/aflX intergenic region and two noncluster regions, tryptophan synthase and acetamidase, is indicative of trans‐species evolution in the cluster. Additionally, polymorphisms in aflW/aflX divide A. flavus strains into two distinct clades, each harbouring only one of the two approved biocontrol strains. The clade with AF36 includes both aflatoxigenic and nonaflatoxigenic strains, whereas the clade with NRRL 21882 comprises only nonaflatoxigenic strains and includes all strains of A. flavus missing the entire gene cluster or with partial gene clusters. Our detection of LD blocks in partial clusters indicates that recombination may have played an important role in cluster disassembly, and multilocus coalescent analyses of cluster and noncluster regions indicate lineage‐specific gene loss in A. flavus. These results have important implications in assessing the stability of biocontrol strains in nature.  相似文献   

15.
Aflatoxin contamination of staple crops, commonly occurring in warm areas, negatively impacts human and animal health, and hampers trade and economic development. The fungus Aspergillus flavus is the major aflatoxin producer. However, not all A. flavus genotypes produce aflatoxins. Effective aflatoxin control is achieved using biocontrol products containing spores of atoxigenic A. flavus. In Africa, various biocontrol products under the tradename Aflasafe are available. Private and public sector licensees manufacture Aflasafe using spores freshly produced in laboratories adjacent to their factories. BAMTAARE, the licensee in Senegal, had difficulties to obtain laboratory equipment during its first year of production. To overcome this, a process was developed in Ibadan, Nigeria, for producing high-quality dry spores. Viability and stability of the dry spores were tested and conformed to set standards. In 2019, BAMTAARE manufactured Aflasafe SN01 using dry spores produced in Ibadan and sent via courier and 19 000 ha of groundnut and maize in Senegal and The Gambia were treated. Biocontrol manufactured with dry spores was as effective as biocontrol manufactured with freshly produced spores. Treated crops contained safe and significantly (P < 0.05) less aflatoxin than untreated crops. The dry spore innovation will make biocontrol manufacturing cost-efficient in several African countries.  相似文献   

16.
Aspergillus flavus and Aspergillus parasiticus cause perennial infection of agriculturally important crops in tropical and subtropical areas. Invasion of crops by these fungi may result in contamination of food and feed by potent carcinogenic aflatoxins. Consumption of aflatoxin contaminated foods is a recognised risk factor for human hepatocellular carcinoma (HCC) and may contribute to the high incidence of HCC in Southeast Asia. This study conducted a survey of Vietnamese crops (peanuts and corn) and soil for the presence of aflatoxigenic fungi and used microsatellite markers to investigate the genetic diversity of Vietnamese Aspergillus strains. From a total of 85 samples comprising peanut (25), corn (45) and soil (15), 106 strains were isolated. Identification of strains by colony morphology and aflatoxin production found all Vietnamese strains to be A. flavus with no A. parasiticus isolated. A. flavus was present in 36.0% of peanut samples, 31.1% of corn samples, 27.3% of farmed soil samples and was not found in virgin soil samples. Twenty-five per cent of the strains produced aflatoxins. Microsatellite analysis revealed a high level of genetic diversity in the Vietnamese A. flavus population. Clustering, based on microsatellite genotype, was unrelated to aflatoxin production, geographic origin or substrate origin.  相似文献   

17.
Aspergillus flavus isolated from naturally infected leaf-eating caterpillar (Opisina arenosella W.), lace bug (Stephanitis typica D.) and plant hopper (Proutista moesta Westwood), insect pests of the coconut palm, were tested for aflatoxin (AT) production by employing various media formulations. These A. flavus isolates were earlier found to be entomopathogenic in laboratory bioassays. A laboratory contaminant and four standard aflatoxigenic A. flavus isolates were also included in this study as reference strains. All A. flavus isolates were tested on seven AT detection media: coconut extract agar, coconut extract-sodium desoxycholate agar, coconut extract-ascorbic acid agar, coconut extract-Czapek Dox agar, coconut extract-milk powder agar, 10% commercial coconut milk powder agar (CCMPA) and 20% CCMPA. Only two isolates of A. flavus, originally isolated from O. arenosella and P. moesta, produced ATs. AT production was detected within 48 h of incubation and was detected continually up to 1 month. These AT-producing A. flavus isolates also produced bright yellow pigmentation in the medium. Of all the seven media used for AT detection, CCMPA (10%) was found to be the best one, followed by 20% CCMPA, for direct and rapid AT detection. AT production was not necessary for pathogenicity in the insects. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The ability of two non-aflatoxigenic Aspergillus flavus Link isolates (CT3 and K49) to reduce aflatoxin contamination of corn was assessed in a 4-year field study (2001–2004). Soil was treated with six wheat inoculant treatments: aflatoxigenic isolate F3W4; two non-aflatoxigenic isolates (CT3 and K49); two mixtures of CT3 or K49 with F3W4; and an autoclaved wheat control, applied at 20 kg ha?1. In 2001, inoculation with the aflatoxigenic isolate increased corn grain aflatoxin levels by 188% compared to the non-inoculated control, while CT3 and K49 inoculation reduced aflatoxin levels in corn grain by 86 and 60%, respectively. In 2002, the non-toxigenic CT3 and K49 reduced aflatoxin levels by 61 and 76% compared to non-inoculated controls, respectively. In 2001, mixtures of aflatoxigenic and non-aflatoxigenic isolates had little effect on aflatoxin levels, but in 2002, inoculation with mixtures of K49 and CT3 reduced aflatoxin levels 68 and 37% compared to non-inoculated controls, respectively. In 2003 and 2004, a low level of natural aflatoxin contamination was observed (8 ng g?1). However, inoculation with mixtures of K49?+?F3W4 and CT3?+?F3W4, reduced levels of aflatoxin 65–94% compared to the aflatoxigenic strain alone. Compared to the non-sclerotia producing CT3, strain K49 produces large sclerotia, has more rapid in vitro radial growth, and a greater ability to colonize corn when artificially inoculated, perhaps indicating greater ecological competence. Results indicate that non-aflatoxigenic, indigenous A. flavus isolates, such as strain K49, have potential use for biocontrol of aflatoxin contamination in southern US corn.  相似文献   

19.
Preharvest seed infection byAspergillus flavus and aflatoxin contamination in selected groundnut genotypes (fourA. flavus-resistant and fourA. flavus-susceptible) were examined in different soil types at several locations in India in 1985–1990. Undamaged mature pods were sampled at harvest and seed examined forA. flavus infection and aflatoxin content in two or more trials at ICRISAT Center on light sandy soils and red sandy loam soils (Alfisols), and on Vertisols, at Anantapur on light sandy soils, and at Dharwad and Parbhani on Vertisols. Rainy season trials (1985–1989) were all rainfed. Post-rainy season trials were irrigated; late-season drought stress (90 days after sowing (DAS) until harvest at 125 DAS) was imposed in the 1987/88 and 1989/90 seasons.A. flavus infection and aflatoxin contamination levels were much lower in seed of all genotypes from Vertisols than in seed from Alfisols across locations and seasons. Vertisols also had significantly lower populations ofA. flavus than Alfisols. There were no marked differences between light sandy soils and red sandy loam soils (Alfisols) in respect of seed infection byA. flavus and aflatoxin contamination. Significant interactions between genotypes and soil types were evident, especially in theA. flavus-susceptible genotypes. Irrespective of soil types,A. flavus-resistant genotypes showed lower levels of seed infection byA. flavus and other fungi than didA. flavus-susceptible genotypes. The significance of the low preharvest aflatoxin risk in groundnuts grown on Vertisols is highlighted.ICRISAT Journal Article No. JA 1122  相似文献   

20.
Aims: The objectives of this study were to assess the genetic relationships between toxigenic and atoxigenic isolates of Aspergillus flavus collected from peanut fields in China, and to analyse deletions within the aflatoxin biosynthetic gene cluster for the atoxigenic isolates. Methods and Results: Analysis of random‐amplified polymorphic DNA and microsatellite‐primed PCR data showed that the toxigenic and atoxigenic isolates of A. flavus were not clustered based on their regions and their ability of aflatoxin and sclerotial production. These results were further supported by DNA sequence of ITS, pksA and omtA genes. PCR assays showed that 24 of 35 isolates containing no detectable aflatoxins had the entire aflatoxin gene cluster. Eleven atoxigenic isolates had five different deletion patterns in the cluster. Conclusions: Toxigenic and atoxigenic isolates of A. flavus are genetically similar, but some atoxigenic isolates having deletions within the aflatoxin gene cluster can be identified readily by PCR assays. Significance and Impact of the Study: Because the extensive deletions within the aflatoxin gene cluster are not rare in the atoxigenic isolates, analysis of deletion within the cluster would be an effective method for the rapid screening of atoxigenic isolates for developing biocontrol agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号