首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bois noir (BN), the most prevalent disease of the grapevine yellows complex, causes considerable yield loss in vineyards. BN is associated with phytoplasma strains of the species ‘Candidatus Phytoplasma solani’ (taxonomic subgroup 16SrXII‐A). In Europe, the BN phytoplasma is transmitted to grapevine mainly by Hyalesthes obsoletus, a polyphagous cixiid completing its life cycle on stinging nettle and field bindweed. As a result of the complexity of BN epidemiology, no effective control strategies have been developed. In previous studies conducted in the eastern Mediterranean coast of Israel, chaste tree (Vitex agnus‐castus) was found to be the preferred host plant of H. obsoletus but did not harbour BN phytoplasma. Thus, a ‘push and pull’ strategy was suggested based on the fact that chaste tree plants located at vineyard borders was an effective trap plant for H. obsoletus adults. However, in other studies carried out in the eastern Adriatic coast of Montenegro, chaste tree was found to be a key source plant for BN phytoplasma transmission to grapevine. This study aimed to investigate (i) the interaction between chaste tree and H. obsoletus through survival, attractiveness and oviposition experiments conducted comparing the behaviour of H. obsoletus in chaste tree versus stinging nettle and grapevine and (ii) the capability of chaste tree to harbor ‘Ca. P. solani’ in northern Italy through transmission trials. H. obsoletus adults were found to survive on chaste tree and grapevine over a 1 week period and prefer chaste tree to grapevine. Moreover, H. obsoletus produced eggs and overwintered as nymphs on chaste tree, even if at a lesser extent than on stinging nettle. H. obsoletus originating from nettle was found able to transmit ‘Ca. P. solani’ to chaste tree (2 plants of 16 were found infected by the BN phytoplasma strain St5 identified in H. obsoletus specimens). These results increased our knowledge about the role of Vitex agnus‐castus as host plant of H. obsoletus and BN phytoplasma in northern Italy and do not recommend considering chaste tree as trap plant at vineyard borders.  相似文献   

2.
Bois noir (BN) is an insect-transmitted grapevine yellows disease caused by phytoplasmas belonging to the stolbur subgroup 16SrXII-A. In Italy, increasing prevalence of stolbur phytoplasma strains in vineyards suggests progressive spread of the disease and potential for heavy impacts on the wine industry. In this study, we investigated the genetic diversity of stolbur phytoplasma strains in BN phytoplasma populations. Nucleotide sequences of 16S rRNA genes from stolbur phytoplasma strains affecting vineyards in the Lombardy region of Italy and stolbur phytoplasma 16S rDNA sequences retrieved from GenBank were subjected to virtual restriction fragment length polymorphism analysis. Calculation of virtual restriction similarity coefficients revealed the presence of new subgroups in group 16SrXII (stolbur phytoplasma group). Representative strains of confirmed new subgroups 16SrXII-F (XII-F) and XII-G and tentative new subgroups XII-A1 through XII-A19, XII-H, XII-I, and XII-J as well as known subgroup XII-A were from grapevines; strains representing three additional tentative new subgroups (XII-K, XII-L and XII-M) were from other plant hosts. Nucleotide sequence alignments identified no less than nine genetically distinct 16S rDNA single nucleotide polymorphism lineages from grapevine, indicating a high degree of genetic heterogeneity within BN phytoplasma populations. The findings open new opportunities for in-depth studies of the distribution of grapevine-associated 16SrXII phytoplasma strains in weeds, insect vector populations and grapevines from vineyards located in different geographic areas.  相似文献   

3.
Three real‐time PCR–based assays for the specific diagnosis of flavescence dorée (FD), bois noir (BN) and apple proliferation (AP) phytoplasmas and a universal one for the detection of phytoplasmas belonging to groups 16Sr‐V, 16Sr‐X and 16Sr‐XII have been developed. Ribosomal‐based primers CYS2Fw/Rv and TaqMan probe CYS2 were used for universal diagnosis in real‐time PCR. For group‐specific detection of FD phytoplasma, ribosomal‐based primers fAY/rEY, specific for 16Sr‐V phytoplasmas, were chosen. For diagnosis of BN and AP phytoplasmas, specific primers were designed on non‐ribosomal and nitroreductase DNA sequences, respectively. SYBR® Green I detection coupled with melting curve analysis was used in each group‐specific protocol. Field‐collected grapevines infected with FD and BN phytoplasmas and apple trees infected with AP phytoplasma, together with Scaphoideus titanus, Hyalesthes obsoletus and Cacopsylla melanoneura adults, captured in the same vineyards and orchards, were used as templates in real‐time PCR assays. The diagnostic efficiency of each group‐specific protocol was compared with well‐established detection procedures, based on conventional nested PCR. Universal amplification was obtained in real‐time PCR from DNAs of European aster yellows (16Sr‐I), elm yellows (16Sr‐V), stolbur (16Sr‐XII) and AP phytoplasma reference isolates maintained in periwinkles. The same assay detected phytoplasma DNA in all test plants and test insect vectors infected with FD, BN and AP phytoplasmas. Our group‐specific assays detected FD, BN, and AP phytoplasmas with high efficiencies, similar to those obtained with nested PCR and did not amplify phytoplasma DNA of other taxonomic groups. Melting curve analysis was necessary for the correct identification of the specific amplicons generated in the presence of very low target concentrations. Our work shows that real‐time PCR methods can sensitively and rapidly detect phytoplasmas at the universal or group‐specific level. This should be useful in developing defence strategies and for quantitative studies of phytoplasma–plant–vector interactions.  相似文献   

4.
The molecular identification and characterization of phytoplasmas from infected grapevines in four locations in Serbia are reported. Phytoplasmas were detected and identified by restriction fragment length polymorphism (RFLP) analysis of polymerase chain reaction (PCR) amplified 16S rDNA. Grapevine yellows were associated with three molecularly distinguishable phytoplasmas: Flavescence dorée phytoplasmas (elm yellows group: 16SrV‐C subgroup) were present only in the Župa Aleksandrovac region; Bois noir phytoplasmas (stolbur group: 16SrXII‐A subgroup) were detected in the other surveyed regions; a mixed infection of European stone fruit yellows (apple proliferation group: 16SrX‐B subgroup) and Bois noir phytoplasmas was identified in one sample. A finer molecular characterization by RFLP analysis of rpS3 and SecY genes of Flavescence dorée phytoplasmas from Župa Aleksandrovac confirmed that the Serbian genotype is indistinguishable from a strain from the Veneto region, Italy. Characterization of the tuf gene of Bois noir phytoplasmas showed lack of amplification of samples from Erdevik. HpaII profiles of tuf gene PCR products of samples from Pali and Radmilovac were identical, and were indistinguishable from one of the two profiles produced by samples from Italian grapevines used as reference strains.  相似文献   

5.
Bois noir is an important grapevine yellows disease in Europe that can cause serious economic losses in grapevine production. It is caused by stolbur phytoplasma strains of the taxonomic group 16Sr‐XII‐A. Hyalesthes obsoletus Signoret (Hemiptera: Cixiidae) is the most important vector of bois noir in Europe. This polyphagous planthopper is assumed to mainly use stinging nettle [Urtica dioica L. (Urticaceae)] and field bindweed [Convolvulus arvensis L. (Convolvulaceae)] as its host plants. For a better understanding of the epidemiology of bois noir in Switzerland, host plant preferences of H. obsoletus were studied in the field and in the laboratory. In vineyards of Western Switzerland, adults of H. obsoletus were primarily captured on U. dioica, but a few specimens were also caught on C. arvensis, hedge bindweed [Calystegia sepium (L.) R. Brown (Convolvulaceae)], and five other dicotyledons [i.e., Clematis vitalba L. (Ranunculaceae), Lepidium draba L. (Brassicaceae), Plantago lanceolata L. (Plantaginaceae), Polygonum aviculare L. (Polygonaceae), and Taraxacum officinale Weber (Asteraceae)]. The preference of the vector for U. dioica compared to C. arvensis was confirmed by a second, more targeted field study and by the positioning of emergence traps above the two plant species. Two‐choice experiments in the laboratory showed that H. obsoletus adults originating from U. dioica preferred to feed and to oviposit on U. dioica compared to C. arvensis. However, H. obsoletus nymphs showed no host plant preference, even though they developed much better on U. dioica than on C. arvensis. Similarly, adults survived significantly longer on U. dioica than on C. arvensis or any other plant species tested [i.e., L. draba and Lavandula angustifolia Mill. (Lamiaceae)]. In conclusion, although nymphs of H. obsoletus had no inherent host plant preference, adults tested preferred to feed and oviposit on U. dioica, which is in agreement with the observed superior performance of both nymphal and adult stages on this plant species. Urtica dioica appears to be the principal host plant of H. obsoletus in Switzerland and plays therefore an important role in the epidemiology of the bois noir disease in Swiss vineyards.  相似文献   

6.
Recent dramatic spread of the grapevine yellows disease Bois Noir (BN) in Germany is above all explained by highly increased abundances of the vector Hyalesthes obsoletus (Hemiptera: Cixiidae) associated to the plant Urtica dioica, the reservoir of the BN pathogen stolbur tuf‐type‐I. The vector acquires BN‐phytoplasma as larvae whilst feeding on the roots of infected U. dioica. To understand the dynamics of the Urtica‐cycle, we tested at what instar larvae become infected and whether infection affects larvae size (i.e. growth) at two sites in the Mosel Valley, Germany. Larvae were tested from infected plants and collected at instar‐stages 3, 4 and 5. Larvae at stage 3 were already infected but infection rates increased significantly between stage 3 and 5, mean infection rates: 0.12–0.62. There was no effect of infection on larval size at any instar stage.  相似文献   

7.
Bois noir is an important grapevine yellows disease that can cause serious economical losses in European grapevine production. Hyalesthes obsoletus Signoret (Hemiptera, Cixiidae) is the principal vector of bois noir in Switzerland and stinging nettle (Urtica dioica) is its favourite host plant species in vineyards. As bois noir disease can hardly be cured and direct control measures against H. obsoletus are ineffective, viticultural control practices target stinging nettle, the actual reservoir and source of both the pathogen and its vector. Currently, it is recommended to apply herbicides against stinging nettle at the end of the season to kill developing H. obsoletus nymphs. To verify if this late period of herbicide application is justified, stinging nettle patches were treated with glyphosate in the autumn, in the spring or were left untreated as a control. Herbicide applications at both dates controlled the growth of stinging nettle very well in the subsequent summer, although the autumnal treatment was slightly more efficient. To study glyphosate’s direct impact on the development of H. obsoletus nymphs, emergence traps were placed directly in the centre of treated and untreated stinging nettle patches. There was no significant difference among the three treatments in the total number of adults emerging. Thus, an aerial application of glyphosate in either spring or autumn did not inhibit the nymphs’ development on the roots of stinging nettle in the soil. Our results challenge current recommendations of applying herbicides against stinging nettle at the end of the season and suggest that stinging nettle could also be controlled in spring, alike other viticultural weeds.  相似文献   

8.
Within the past 10 years, the yellows disease ‘bois noir’ (BN) has become one of the commercially most important diseases of grapevine [Vitis vinifera L. (Vitaceae)] in Europe. Infection pressure is caused by phytoplasmas of the stolbur 16SrXII‐A group that are transmitted by a planthopper vector, Hyalesthes obsoletus Signoret (Homoptera: Auchenorrhyncha). Infestation happens as an accidental side‐effect of the feeding behaviour of the vector, as vector and pathogen proliferation is dependent on other plants. In Germany, the increase of BN is correlated with the use of a new host plant by the vector, increase in abundance of the vector on the new host plant, and dissemination of host plant‐specific pathogen strains. In this article, we investigate geographic and host‐associated range expansion of the vector. We test whether host‐plant utilization in Germany, hence the increase in BN, is related to genetic host races of the vector and, if so, whether these have evolved locally or have immigrated from southern populations that traditionally use the new host plant. The genetic population analysis demonstrates a recent expansion and circum‐alpine invasion of H. obsoletus into German and northern French wine‐growing regions, which coincides with the emergence of BN. No H. obsoletus mitochondrial DNA haplotype host‐plant affiliation was found, implying that the ability to use alternative host plants is genetically intrinsic to H. obsoletus. However, subtle yet significant random amplified polymorphic DNA (RAPD) genetic differentiation was found among host plant populations. When combined, these results suggest that a geographic range expansion of H. obsoletus only partly explains the increase of BN, and that interactions with host plants also occur. Further possible beneficial factors to H. obsoletus, such as temperature increase and phytoplasma interactions, are discussed.  相似文献   

9.
We report a case study on the vector activity of a Hyalesthes obsoletus (Hemiptera: Cixiidae) population living on nettle plants (Urtica dioica) and transmitting a stolbur phytoplasma (Sp) to grapevines (Vitis vinifera). The research was conducted in a site that included a vineyard bordered with a large fallow area where nettles were the predominant plant species together with sparse old grapevines. Nettles hosted a high population of H. obsoletus. By using transparent sticky traps to sample adults, we observed that the daily flight activity of males and females to grapevines in the fallow was unimodal peaking between 15 and 21 h in the day. Adults were unable of great dispersion into the vineyard and the pattern of insect captures inside the planting reflected the pattern of Sp‐infected grapevines in the late autumn. When insects were forced to feed on grapevine cuttings for transmission assays, survival of H. obsoletus decreased after 24–48 h. The scarce propensity of the vector to move into the vineyard and feed on grapevines was counterbalanced by the rapidity of H. obsoletus to inoculate Sp to grapevines (estimated minimum inoculation access period ranged from 3 to 6 h) and a relative high incidence of Sp in the population of H. obsoletus that ranged between 20% and 30% of sampled insects as shown by a polymerase chain reaction–based procedure. Characterisation of Sp by restriction fragment length polymorphism analysis of nonribosomal phytoplasma DNA showed the occurrence of an Sp strain known to infect H. obsoletus associated to nettles and grapevines in Germany.  相似文献   

10.
A search for phytoplasma-associated diseases was conducted for the first time in the main grapevine-growing localities of the Dukagjini plain in Kosovo. A total of 144 samples were collected from grapevine cultivars displaying leaf yellowing, reddening, discolouration and irregular wood ripening, and analysed using nested and quantitative PCR assays. These assays showed that 35.4% of samples belonging to eight cultivars were positive to the presence of phytoplasmas in the 16SrXII group. The 16S rDNA phytoplasma sequences obtained from 15 samples shared identity greater than 99.5% with ‘Candidatus Phytoplasma solani’. Sequence analysis of the tuf gene showed that the strains found in Kosovar grapevines are in the tuf-type b1 group, sharing 99.6% to 99.8% identity with ‘Ca. P. solani'-related strains associated with the “bois noir” grapevine disease in many European countries; the secY gene sequences, on the other hand, shared 100% identity with ‘Ca. P. solani' strains from Bosnia and Herzegovina, Serbia, Croatia and Turkey. This study constitutes the first report on the presence and molecular characterization of phytoplasmas in Kosovar vineyards. Based on these results, it is recommended that testing for phytoplasma be included in the certification program for grapevine in Kosovo.  相似文献   

11.
12.
Bois noir (BN) is one of the main phytoplasma diseases of grapevine (Vitis vinifera). It is widespread, and can cause severe losses in European vineyards. The infective agent colonizes phloem elements and induces visible symptoms of leaf yellowing or reddening after a relatively long incubation period. As the most sensitive cultivars to BN, Chardonnay plants were grouped as healthy or symptomatic in spring, based on the records from the previous year. Leaf gas exchange and chlorophyll a fluorescence were measured weekly from July to September in healthy plants, and in symptomatic and asymptomatic leaves from symptomatic plants. The midday relative water content (mRWC) was measured once per month. The detection of phytoplasma DNA by nested-polymerase chain reaction revealed BN infection in symptomatic leaf samples at the end of September. A significant decrease in pigment content and maximum quantum efficiency of photosystem II (Fv/Fm) of these symptomatic leaves was detected from July to September, although in the asymptomatic leaves of the symptomatic plants the net photosynthesis (Pn) decrease was not significant. In the leaves from the healthy plants, Pn and transpiration were relatively stable. Of note, in July, an initially healthy plant showed a strong Pn reduction that was followed by visible leaf yellowing symptoms only in August. The phytoplasma infection also stimulated significant reductions in mRWC of the symptomatic leaves, with a final large decrease in yield.  相似文献   

13.
During a survey on grapevine yellows disease complex in vineyards of Lombardy region (northern Italy), phytoplasmas associated with Flavescence dorée disease were identified in symptomatic grapevines. Polymerase chain reaction and restriction fragment length polymorphism (RFLP) analyses of 16S rDNA revealed the prevalence of phytoplasmal subgroup 16SrV-D. Bioinformatic analyses of nucleotide sequences of rplV and rpsC genes, amplified from 16SrV-D phytoplasma infected grapevines and cloned, underscored the presence of five confirmed rpsC single nucleotide polymorphism (SNP) lineages, determined by different combination of SNPs at nucleotide positions 29, 365, 680, and 720 of rpsC gene. Virtual and actual RFLP analyses with the enzyme TaqI validated the presence of these SNPs. Co-infections by up to four distinct rpsC SNP lineages of 16SrV-D phytoplasma were found in grapevines. These results could open new perspectives for the study of the ecology and the epidemiology of Flavescence dorée.  相似文献   

14.
Aim: Evaluation of the genetic variability of stolbur phytoplasma infecting grapevines, bindweeds and vegetables, collected in different central and southern Italian regions. Materials and Results: Phytoplasma isolates belonging to stolbur subgroup 16SrXII‐A were subjected to molecular characterization by polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP), to investigate two different nonribosomal genes: tuf and vmp1. In grapevines, 32% of samples were infected by tuf‐a type and 68% by tuf‐b type, with different relative incidences in the regions surveyed. All herbaceous samples (bindweeds, tomato, tobacco, pepper, celery) were infected by tuf‐b. The gene vmp1 showed higher polymorphism in grapevines (nine profiles) than herbaceous plants (six) by RFLP analysis, in agreement with nucleotide sequences’ analysis and virtual digestions. Conclusions: The phylogenetic analysis of vmp1 gene sequences supports the RFLP data and demonstrates the accuracy of RFLP for preliminary assessments of genetic diversity of stolbur phytoplasmas and for screening different vmp types. Significance and Impact of the Study: Stolbur represents a serious phytosanitary problem in the areas under investigation, owing to heavy economic losses in infected grapevines and vegetables. Molecular information about the complex genotyping of the vmp1 gene provides useful data towards a better understanding of stolbur epidemiology. Moreover, this study clarifies some different vmp1 genotype classifications of stolbur, providing molecular data in comparison with previous investigations.  相似文献   

15.
Three real-time PCR systems for direct detection of phytoplasmas associated to Flavescence dorée (FD), Bois noir (BN) and aster yellows (AY) diseases were developed. TaqMan probes and primers were designed on the 16S ribosomal RNA sequences of phytoplasma genome. A further TaqMan assay, targeting a grapevine gene encoding for the chloroplast chaperonin 21, was developed in order to check the DNA quality and to verify the absence of PCR inhibition. A comparison between real-time PCR and conventional nested-PCR methods for phytoplasma detection was carried out on several reference samples from grapevine, periwinkle, other host plants and insect species. Detection of FD, BN and AY phytoplasma DNA on infected specimens was rapid, specific and reproducible. Sensitivity was as high as nested-PCR assay. The two procedures were then used on about 450 samples collected from grapevines showing yellows symptoms. The results showed that real-time PCR approach for phytodiagnostic purposes was more advantageous than nested-PCR method with regard to rapidity of the assay and reduced risk of sample cross contamination. These new protocols represent an improvement of existing analytical methods and could be used as a reliable diagnostic procedure in certification and control programs.  相似文献   

16.

Hyalesthes obsoletus Signoret (Hemiptera: Auchenorrhyncha: Cixiidae) is a univoltine, polyphagous planthopper that completes its life cycle, including the subterranean nymph cryptic stage, on herbaceous weeds. In vineyards, it can transmit ‘Candidatus Phytoplasma solani’, an obligate parasitic bacterium associated with bois noir (BN) disease of grapevine, from its host plants to grapevine when occasionally feeding on the latter. The main disease management strategies are based on vector(s) control. Insecticide treatments on grapevine canopy are completely inefficient on H. obsoletus, due to its life cycle. Consequently, control of this planthopper focuses on the nymphs living on the roots of their host plants. Such practices, based on herbicide application and/or weed management, can reduce vector density in the vineyard but can impact the environment or may not be applicable, highlighting the necessity for alternative strategies. In this study, the efficacy of entomopathogenic nematodes (EPNs; Steinernema carpocapsae, S. feltiae, Heterorhabditis bacteriophora) and fungi (EPFs; Beauveria bassiana, Metarhizium anisopliae, Isaria fumosorosea, Lecanicillium muscarium) against H. obsoletus nymphs (EPNs) and adults (EPNs and EPFs) was assessed under laboratory and greenhouse conditions. The majority of examined EPNs and EPFs were able to kill H. obsoletus exhibiting a range of effectiveness. S. carpocapsae (among EPNs) and I. fumosorosea (among EPFs) were found to be the most effective biocontrol agents in all trials carried out. Advantages and limitations of such promising biocontrol agents were discussed. Ecological competency and conditions that can impede or enhance the EPNs and EPFs performance should be investigated to optimize their performance under field conditions.

  相似文献   

17.
Suspected phytoplasma and virus‐like symptoms of little leaf, yellow mosaic and witches’ broom were recorded on soya bean and two weed species (Digitaria sanguinalis and Parthenium hysterophorus), at experimental fields of Indian Agricultural Research Institute, New Delhi, India, in August–September 2013. The phytoplasma aetiology was confirmed in symptomatic soya bean and both the weed species by direct and nested PCR assays with phytoplasma‐specific universal primer pairs (P1/P6 and R16F2n/R16R2n). One major leafhopper species viz. Empoasca motti Pruthi feeding on symptomatic soya bean plants was also found phytoplasma positive in nested PCR assays. Sequencing BLASTn search analysis and phylogenetic analysis revealed that 16Sr DNA sequences of phytoplasma isolates of soya bean, weeds and leafhoppers had 99% sequence identity among themselves and were related to strains of ‘Candidatus Phytoplasma asteris’. PCR assays with Mungbean yellow mosaic India virus (MYMIV) coat‐protein‐specific primers yielded an amplicon of approximately 770 bp both from symptomatic soya bean and from whiteflies (Bemisia tabaci) feeding on soya bean, confirmed the presence of MYMIV in soya bean and whitefly. Hence, this study suggested the mixed infection of MYMIV and ‘Ca. P. asteris’ with soya bean yellow leaf and witches’ broom syndrome. The two weed species (D. sanguinalis and P. hysterophorus) were recorded as putative alternative hosts for ‘Ca. P. asteris’ soya bean Indian strain. However, the leafhopper E. motti was recorded as putative vector for the identified soya bean phytoplasma isolate, and the whitefly (B. tabaci) was identified as vector of MYMIV which belonged to Asia‐II‐1 genotype.  相似文献   

18.
Plants of alfalfa (Medicago sativa) exhibiting general stunting, proliferation and phyllody associated with leaf yellowing and reddening were observed in three localities of Central Serbia. Phytoplasma strains belonging to 16SrIII‐B and 16SrXII‐A groups were detected and identified by RFLP and sequence analysis of 16S rDNA. Stolbur phytoplasma tuf gene RFLP analysis showed the presence of the TufAY‐b‐type phytoplasma subgroup in 80% of symptomatic samples. This is the first report of 16SrIII‐B and 16SrXII‐A phytoplasma groups affecting alfalfa in Serbia.  相似文献   

19.
The epidemiology of vector transmitted plant diseases is highly influenced by dispersal and the host‐plant range of the vector. Widening the vector's host range may increase transmission potential, whereas specialization may induce specific disease cycles. The process leading to a vector's host shift and its epidemiological outcome is therefore embedded in the frameworks of sympatric evolution vs. immigration of preadapted populations. In this study, we analyse whether a host shift of the stolbur phytoplasma vector, Hyalesthes obsoletus from field bindweed to stinging nettle in its northern distribution range evolved sympatrically or by immigration. The exploitation of stinging nettle has led to outbreaks of the grapevine disease bois noir caused by a stinging nettle‐specific phytoplasma strain. Microsatellite data from populations from northern and ancestral ranges provide strong evidence for sympatric host‐race evolution in the northern range: Host‐plant associated populations were significantly differentiated among syntopic sites (0.054 < FHT < 0.098) and constant over 5 years. While gene flow was asymmetric from the old into the predicted new host race, which had significantly reduced genetic diversity, the genetic identity between syntopic host‐race populations in the northern range was higher than between these populations and syntopic populations in ancestral ranges, where there was no evidence for genetic host races. Although immigration was detected in the northern field bindweed population, it cannot explain host‐race diversification but suggests the introduction of a stinging nettle‐specific phytoplasma strain by plant‐unspecific vectors. The evolution of host races in the northern range has led to specific vector‐based bois noir disease cycles.  相似文献   

20.
The grapevine disease ‘bois noir’ is widespread in European viticulture, but in many regions there is a lack of correspondence between disease spread and abundance of the main insect vector, the planthopper Hyalesthes obsoletus. This was the situation in Austria until 2012, when a mass occurrence of the vector was observed on Urtica dioica, a new host plant for the vector and reservoir plant for the pathogen, stolbur phytoplasma, in this area. Here we analyse the origin of the Austrian vector populations using genetic markers. The origin was unambiguously assigned to two regional populations, and two causes for the population expansion: immigration of East Central European populations and local demographic expansion. The observed population increase was thus independent of phylogenetic ancestry, but linked to the host plant and the exchange of a specific stolbur phytoplasma strain between the two vector populations. These circumstances are identical to but independent of the emergence of bois noir west of the European Alps, where an exchange between other vector populations associated with U. dioica of another stolbur phytoplasma genotype has led to disease outbreaks. Combined, the independent outbreaks in Austria and Europe west of the Alps are suggestive of an active role for stolbur phytoplasma in the vector–plant interaction and thus the host distribution of the vector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号