首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The cultivation of Cry1Ab‐expressing genetically modified MON810 (Bt maize) has led to public concern in Europe, regarding its impact on nontarget arthropods (NTAs). We have assessed the potential effects of DKC 6451 YG (MON810) maize on canopy NTAs in a farm‐scale study performed in Central Spain during 3 years. The study focused on hemipteran herbivores (leafhoppers and planthoppers) and hymenopteran parasitic wasps (mymarids) collected by yellow sticky traps, which accounted for 72% of the total number of insects studied. The dynamics and abundance of these groups varied among years, but no significant differences were found between Bt and non‐Bt maize, indicating that Bt maize had no negative effect on these taxa. Nonetheless, the Cry1Ab toxin was detected in 2 different arthropods collected from Bt maize foliage, the cicadellids Zyginidia scutellaris and Empoasca spp. A retrospective power analysis on the arthropod abundance data for our field trials has determined that Z. scutellaris and the family Mymaridae have high capacity to detect differences between the Bt maize and its isogenic counterpart. The use of these canopy NTAs as surrogates for assessing environmental impacts of Bt maize is discussed.  相似文献   

2.
Abstract This study reports on preliminary findings of habitat‐contingent temporal variability in ant assemblages in Purnululu National Park in northern Australia's semiarid tropics, by sampling at the end of the dry season (October 2004) and the end of the wet season (April 2005). Six grids of 15 pitfall traps were established in each of the spinifex, sandplain and gorge habitats. Community composition was dominated by behaviourally dominant ants (Iridomyrmex spp.) and climate specialists (Melophorus and Meranoplus spp.). Ant activity was higher in the wet season sampling period, with greater species richness and abundance. Interestingly, temporal variation in ant assemblage richness, abundance and composition varied markedly with habitat type. While there were large differences between sampling periods for the spinifex and sandplain habitat, this was not the case in the gorges. These temporal changes in ant assemblages are postulated to be linked with major environmental differences between the two sampling periods, driven by seasonal climatic conditions. It is likely that these changes influenced the ant assemblages through species differences in physiological tolerance levels, ecological requirements and competitive ability. This study demonstrates the need, in highly seasonal environments, to consider the temporal context of studies in relation to habitat type, particularly when undertaking biodiversity surveys and monitoring.  相似文献   

3.
4.
Common methods to assess diversity and abundance of Orthoptera are sweep netting, transect counts and box-quadrat sampling. Pitfall trapping, by contrast, is rarely used, and the value of this method is still being questioned. In 2008, we studied Orthoptera species richness and abundance in five vegetation types along a gradient of dune succession on the Baltic Sea island of Hiddensee (NE Germany) by comparing transect-count and pitfall-trapping data. Using transect counts, 12 species were detected in the study area. With pitfall traps, three chorto- and thamnobiont Ensifera species (C. dorsalis, M. roeselii and T. viridissima) were not caught at all, and it was only in low-growing and sparsely-vegetated grey dunes that all present species were detected. With pitfall traps, the proportion of present species recorded strongly declined with increasing height and density of the vegetation type. Assuming that transect counts are a good proxy for relative Orthoptera densities, densities ascertained by pitfall traps are strongly biased by vegetation structure and locomotive behaviour of the species. More than 80% of all individuals were caught in sparsely-vegetated grey dunes. Frequency patterns of the species also differed. Using pitfall traps, especially chortobiont species were significantly underrepresented. Qualitative and quantitative sampling of Orthoptera using pitfall traps seems only reasonable in habitats with low and sparse vegetation and a high proportion of geobiont species.  相似文献   

5.
Field studies were conducted in order to compare the effectiveness of unbaited probe traps and grain trier samples in the detection of several beetle species. On June 15, 1997, fourteen probe traps were placed in three steel bins containing wheat in Central Greece. Two of them were inserted in the central zone of the bulk, five in the half of the bin radius (median zone) and seven near the bin wall (distal zone). From June 30 up to and including January 1998, the traps were checked for adult beetles every fifteen days (15 sampling dates in total). On each date, samples were also taken from spots adjacent to trap locations, using a grain trier. The mean temperatures recorded near the bulk surface decreased by an average of 1.16 °C per sampling date. Twenty-four species, belonging to 14 families of Coleoptera were found. The most abundant species in the traps were Cryptolestes ferrugineus and Tribolium castaneum, while Sitophilus oryzae was the most abundant in the samples. Significantly greater numbers of adults were found in traps than in samples, during the whole sampling period; traps also detected adults in most locations while in the corresponding samples no adults were found. Significantly higher numbers of adults were found in the central sampling zone, using both devices. Taylor's power law parameters showed that in both sampling methods the most abundant species showed aggregated spatial patterns. Although the correlation coefficient values between trap catches and number of adults per trier sample differ significantly from zero (P < 0.01) in a high number of sampling dates, it can be concluded that traps are poor indicators of population density. The accuracy provided as a percentage of the mean, decreases exponentially with the increase of the mean value. Based on traps, the desired accuracy level (35%) is not achievable even in higher mean values or even with high numbers of traps. On the contrary, with trier samples it is possible to estimate population density with a relatively low number of sampling units. Significant differences in the required number of sampling units (sample size) were noted among species.  相似文献   

6.
7.
The relative abundances of ant species captured in pitfall traps was compared with those obtained by direct counts in quadrats at a savanna site in Kakadu National Park, Northern Territory. Two measures of abundance in traps were used, one based on total numbers of ants, the other on species frequency of occurrence. All species commonly recorded in quadrats were collected in traps, and their relative abundances were highly correlated on all occasions. Of the 20 most common species in quadrats, five occurred with a significantly different (in all cases lower) frequency in pitfall traps, but these species represented only 1.8–3.1% of total quadrat counts. Results from quadrats and pitfall traps were particularly similar (r > 0.8) when species-were classified into functional groups. Frequency data from traps may sometimes overestimate the abundance of widespread, solitary foraging species (e.g. ‘Chelaner’ and Tetramorium spp.) and underestimate species with large colony sizes (e.g. Iridomyrmex spp.). Data based on total numbers of ants in traps may be more prone to distortion arising from species differences in locomotor behaviour. Species counts in traps could be scaled to reduce these distortions. The finding that pitfall traps gave results comparable with those from quadrat counts provides support for the use of pitfall traps in studies of Australian ant communities in open habitats.  相似文献   

8.
Conversion from conventional‐tillage (CT) to no‐tillage (NT) agriculture can affect pests and beneficial organisms in various ways. NT has been shown to reduce the relative abundance and feeding damage of pea leaf weevil (PLW), Sitona lineatus L. (Coleoptera: Curculionidae) in spring pea, especially during the early‐season colonization period in the Palouse region of northwest Idaho. Pitfall traps were used to quantify tillage effects on activity‐density of PLW in field experiments conducted during 2001 and 2002. As capture rate of pitfall traps for PLW might be influenced by effects of tillage treatment, two mark‐recapture studies were employed to compare trapping rates in NT and CT spring pea during 2003. Also in 2003, direct sampling was used to estimate PLW densities during the colonization period, and to assess PLW feeding damage on pea. PLW activity‐density was significantly lower in NT relative to CT during the early colonization period (May) of 2001 and 2002, and during the late colonization period (June) of 2002. Activity‐density was not different between treatments during the early emergence (July) or late emergence (August) periods in either year of the study. Trap capture rates did not differ between tillage systems in the mark‐recapture studies, suggesting that pitfall trapping provided unbiased estimates of PLW relative abundances. PLW absolute densities and feeding damage were significantly lower in NT than in CT. These results indicate that NT provides a pest suppression benefit in spring pea.  相似文献   

9.
Transgenic corn producing Cry1Ac toxins from Bacillus thuringiensis (Bt) provides effective control of Asian corn borer, Ostrinia furnacalis (Guenée), and thus reduces insecticide applications. However, whether Bt corn exerts undesirable effects on non-target arthropods (NTAs) is still controversial. We conducted a 2-yr study in Shangzhuang Agricultural Experiment Station to assess the potential impact of Bt corn on field population density, biodiversity, community composition and structure of NTAs. On each sampling date, the total abundance, Shannon''s diversity index, Pielou''s evenness index and Simpson''s diversity index were not significantly affected by Bt corn as compared to non-Bt corn. The “sampling dates” had a significant effect on these indices, but no clear tendencies related to “Bt corn” or “sampling dates X corn variety” interaction were recorded. Principal response curve analysis of variance indicated that Bt corn did not alter the distribution of NTAs communities. Bray-Curtis dissimilarity and distance analysis showed that Cry1Ac toxin exposure did not increase community dissimilarities between Bt and non-Bt corn plots and that the evolution of non-target arthropod community was similar on the two corn varieties. The cultivation of Bt corn failed to show any detrimental evidence on the density of non-target herbivores, predators and parasitoids. The composition of herbivores, predators and parasitoids was identical in Bt and non-Bt corn plots. Taken together, results from the present work support that Bt corn producing Cry1Ac toxins does not adversely affect NTAs.  相似文献   

10.
Abstract 1 The presence and abundance of arthropods were compared in three olive orchards under organic, integrated and conventional management regimes. In each olive orchard, trees were sampled in the canopy by beating branches and soil arthropods by placing pitfall traps. Contrary to expectations, the highest abundance of arthropods occurred in the integrated management orchard. The most abundant groups were Formicidae and the species Euphyllura olivinae (Homoptera: Psyllidae). 2 Canopies and the soil under the tree canopy (interior soil) were selected as the most informative sites for sampling. The months with the strongest differences were May, June and July, especially June. In the canopy, Araneae, Coleoptera, Diptera, Heteroptera, Hymenoptera, Homoptera, Lepidoptera, Neuroptera and Thysanoptera were the most abundant, and showed significant differences in abundance among orchards with different management regimes. Moreover, in the canopies, Coleoptera and Lepidoptera showed a seasonal pattern of abundance and consistent significant differences between the organic orchard vs. the integrated and conventional ones in both years of study. In the soil, 12 orders showed significant differences in abundance among management regimes at some point of the sampling season. 3 In a search for biological indicators that could help to distinguish between management regimes, a discriminant analysis applied to the data indicated that only the samples from the canopy were classified according to their management regime in a consistent way over time. The groups selected by the analysis to establish differences among management regimes were Coleoptera, Diptera, Heteroptera, Lepidoptera and Thysanoptera. The analysis applied to compare organic vs. non‐organic olive orchards, again identified Coleoptera and Lepidoptera as suitable groups. The results suggest that these two orders are potential bioindicators to distinguish, in a simple way, organic olive orchards from non‐organic ones.  相似文献   

11.
Pitfall trapping is a standard sampling method to compare the abundance or community structure of ground beetles. However, effects of sampling duration on biodiversity estimation of ground beetles according to different trap sizes have not been experimentally evaluated in temperate forests in Korea. Therefore, the objective of this study was to determine the interaction between trap sizes (SB, small‐sized bottle; MB, medium‐sized bottle; PC, plastic cup; PJ, plastic jar; PT, perforated type trap; FT, funnel‐type trap) and sampling duration (T1, 2 weeks × 2 sessions, 28 days; T2, 2 weeks × 4 sessions, 56 days; T3, 4 weeks × 2 sessions, 56 days) on estimation of ground beetle assemblages in Naejangsan National Park, a temperate forest in Korea. Funnel type and larger pitfall traps collected higher numbers of individuals and species than other trap sizes. Species composition of ground beetles was different by size of traps (SB, MB, and PC vs. PJ, PT, and FT). In particular, ground beetle composition in larger traps (PJ, PT, and FT) appeared to be influenced by environmental characteristics according to localities (e.g., soil characters and dominant tree species). These findings from our study support that pitfall trapping of ground beetles can be influenced by trap sizes per se as well as sampling durations and environmental characteristics. Thus, biodiversity monitoring in temperate forests should be conducted with long sampling duration (at least 28 days) using large‐sized traps (> 7.5 cm in diameter of trap mouthpart) considering expenses and study aims.  相似文献   

12.
13.
Ants are an incredibly diverse and ubiquitous group of invertebrates in most terrestrial ecosystems. Although extensively sampled, the majority of ant inventories do not evaluate the effect of different sampling techniques in capturing nontraditional metrics of diversity. We aimed to quantify TD (taxonomic) and FD (functional) diversities for a local ant assemblage by integrating metrics and evaluating complementarity of pitfall traps and Winkler extractors for the leaf litter versus epigeic ant faunas and to determine the effect of sampling techniques on functional composition (community-weighted means of 11 morphological traits) and functional diversity (multi-trait morphospace measured with three different metrics). We sampled the local community in an Atlantic Forest fragment using week-long pitfall traps and 1m2 leaf litter samples submitted to Winkler extractors and quantified the contribution on the technique to uniquely capture the ant morphospace by applying a new index (PWindex). Although ant TD overlapped, FD was significantly affected by the sampling technique. By controlling for TD effects, the community collected by each technique was differentially structured. Higher TD did not translate into wider morphospace for Winklers. Pitfalls recovered more functionally overdispersed assemblages. Pitfalls and Winklers overlapped in the sampling of the overall community, but each sampling method contributed with a unique spectrum to the ant morphospace. Our results suggest the importance of incorporating FD metrics in local ant inventories and the importance of sampling techniques when measuring the magnitude of FD and community structure. Our PWindex further illuminates sampling effects for ant assemblages. Abstract in Portuguese & Spanish is available with online material.  相似文献   

14.
A comparison of pitfall traps with bait traps for sampling leaf litter ants was studied in oak-dominated mixed forests during 1995-1997. A total of 31,732 ants were collected from pitfall traps and 54,694 ants were collected from bait traps. They belonged to four subfamilies, 17 genera, and 32 species. Bait traps caught 29 species, whereas pitfall traps caught 31 species. Bait traps attracted one species not found in pitfall traps, but missed three of the species collected with pitfall traps. Collections from the two sampling methods showed differences in species richness, relative abundance, diversity, and species accumulation curves. Pitfall traps caught significantly more ant species per plot than did bait traps. The ant species diversity obtained from pitfall traps was higher than that from bait traps. Bait traps took a much longer time to complete an estimate of species richness than did pitfall traps. Little information was added to pitfall trapping results by the bait trapping method. The results suggested that the pitfall trapping method is superior to the bait trapping method for leaf litter ant studies. Species accumulation curves showed that sampling of 2,192+/-532 ants from six plots by pitfall traps provided a good estimation of ant species richness under the conditions of this study.  相似文献   

15.
Spider (Araneae) populations in hayfields and pastures in northern Iceland   总被引:1,自引:0,他引:1  
Abstract: Surface‐living spiders were collected in pitfall traps over a 1‐year period in three unimproved pastures and three managed hayfields in northern Iceland, located on sandy, silty and peaty soil. On each of the six fields, six pitfall traps were placed and emptied approximately once a week during summer season, but two traps at longer intervals during winter season. During the summer season, the number of spider specimens was significantly higher in sand than in silt, with peat soil in an intermediate position. Annual management of hayfields includes fertilization, hay cutting and occasional grazing. A total of 22 spider species were collected in the pastures and only 17 in the hayfields. However, the total number of specimens was not significantly different between the two. All spider species were more abundant in pastures than hayfields, with the exception of Erigone atra Blackwall, 1883 and Erigone arctica (White, 1852). These two species dominated the hayfields, together composing 79% of the spider population there, followed by Allomengea scopigera (Grube, 1859) with 7%. The dominance of E. atra in hayfields is related to fertile soils and high‐yielding grass species, which might lead to an increase in certain Collembola species which serve as an important feed for this spider species. However, Tenuiphantes mengei (Kulczyński, 1887) dominated the pastures, representing 22% of the spider population, followed by A. scopigera, Pardosa sphagnicola (Dahl, 1908) and E. atra composing 17, 13 and 12% of the spider population, respectively. E. atra had two abundance peaks, a large peak in early spring (3.7 specimens/day in hayfields), and a smaller peak in early summer, while abundance was much lower the rest of the year. Tenuiphantes mengei had two distinct abundance peaks, one in early summer (0.7 specimens/day in pastures) and another in the autumn, while A. scopigera was almost entirely found in the autumn (1.0 specimens/day in pastures). In general, winter abundance was low, 0.2 specimens/day, compared with 4.4 specimens/day in summer season. In early winter, T. mengei dominated (43% of the spider population), while E. atra dominated in mid‐ and late winter composing 47 and 80% of the spider population respectively.  相似文献   

16.
Aim Determination of the main directions of variance in an extensive data base of annual pollen deposition, and the relationship between pollen data from modified Tauber traps and palaeoecological data. Location Northern Finland and Norway. Methods Pollen analysis of annual samples from pollen traps and contiguous high‐resolution samples from a peat sequence. Numerical analysis (principal components analysis) of the resulting data. Results The main direction of variation in the trap data is due to the vegetation region in which each trap is located. A secondary direction of variation is due to the annual variability of pollen production of some of the tree taxa, especially Betula and Pinus. This annual variability is more conspicuous in ‘absolute’ data than it is in percentage data which, at this annual resolution, becomes more random. There are systematic differences, with respect to peat‐forming taxa, between pollen data from traps and pollen data from a peat profile collected over the same period of time. Main conclusions Annual variability in pollen production is rarely visible in fossil pollen samples because these cannot be sampled at precisely a 12‐month resolution. At near‐annual resolution sampling, it results in erratic percentage values which do not reflect changes in vegetation. Profiles sampled at near annual resolution are better analysed in terms of pollen accumulation rates with the realization that even these do not record changes in plant abundance but changes in pollen abundance. However, at the coarser temporal resolution common in most fossil samples it does not mask the origin of the pollen in terms of its vegetation region. Climate change may not be recognizable from pollen assemblages until the change has persisted in the same direction sufficiently long enough to alter the flowering (pollen production) pattern of the dominant trees.  相似文献   

17.
Abstract:  For their simplicity and effectiveness, pitfall traps have become a standard technique to measure the activity and relative abundance of ground-dwelling arthropods. Permeable screen or mesh bags filled with plant material, referred to as litter bags, have also recently been employed as a complementary sampling technique for epigeal taxa. The anticipated need for increased field research on arthropod populations, particularly in transgenic crops with insecticidal properties, suggests that a relative assessment of both sampling methods could contribute to the design of future studies. Comparisons among pitfall traps, and litter bags placed above- or below-ground indicated that above-ground litter bags most frequently succeeded in collecting certain groups of arthropods associated with moisture and sheltered areas, including centipedes (Chilopoda) and beetle larvae (Carabidae, Staphylinidae). Conversely, pitfall traps most often captured taxa considered active at ground level, such as adult carabids or harvestmen (Opiliones). For taxa collected in >40% of all three trap types, bootstrap confidence intervals for the coefficient of variation (CV; used to assess precision or sampling efficiency) showed that above-ground litter bags were significantly more precise than pitfall traps for sampling elongate springtails (Collembola) and adult rove beetles (Staphylinidae), but only during the first year of sampling. While below-ground litter bags often appeared similar to one or both of the other trap types, in no case were below-ground litter bags best based on frequency of collection or CV. Though differences were not always consistent between years, results suggest that the additional effort required to sample using litter bags may be justified for the collection of some ground-dwelling taxa.  相似文献   

18.
This research aims at developing a remote sensing technique for monitoring the interannual variability of the European larch phenological cycle in the Alpine region of Aosta Valley (Northern Italy) and to evaluate its relationships with climatic factors. Phenological field observations were conducted in eight test sites from 2005 to 2007 to determine the dates of completion of different phenological phases. MODerate Resolution Imaging Spectrometer (MODIS) 250 m 16‐days normalized difference vegetation index (NDVI) time series were fitted with double logistic curves and the dates corresponding to different features of the curves were determined. Comparison with field data showed that the features of the fitted NDVI curve that allowed the best estimate of the start and end of the growing season were the zeroes of its third derivative (MAE of 6 and 4 days, respectively). The start and end of season were also estimated with the spring warming (SW) and growing season index (GSI) phenological models. MODIS start and end of season dates generally agreed with those obtained by the SW and GSI climate‐driven phenological models. However, phenological models provided erroneous results when applied in years with anomalous meteorological conditions. The relationships between interannual variability of the larch phenological cycle and climate were investigated by comparing the mean start and end of season yearly anomalies with air temperature anomalies. A strong linear relationship (R2=0.91) was found between mean spring temperatures and mean start of season dates, with an increase of 1 °C in mean spring temperature leading to a 7‐day anticipation of mean larch bud‐burst date. Leaf coloring dates were found to be best related with mean September temperature (R2=0.77), but with higher spring temperatures appearing to lead to earlier leaf coloring.  相似文献   

19.
20.
Per Arneberg  Johan Andersen 《Oikos》2003,101(2):367-375
Abundance data from pitfall traps are widely used to estimate the relationship between beetle body size and abundance. Such data probably overestimate densities of large bodied species and may overestimate slopes of size‐abundance relationships. Here, we test this idea by comparing size‐abundance patterns found using data from pitfall trapping with those found with data from a quantitative method of estimating abundance, quadrat sampling. We use data from a total of 47 communities. As expected, slopes of size‐abundance relationships are significantly more positive when estimated using data from pitfall traps compared to when using quadrat sampling data. This was seen when looking across different communities, within communities sampled by both methods and when focusing on the set of species found by both methods within a community. These results were also generally found regardless of method of analysis, which were done using regression with species values as independent data points and using the independent contrast method, and with slopes estimated using ordinary least square regression or the structural relation. Most important, slopes of size‐abundance relationships based on data from pitfall traps were on average significantly more positive than ?0.75 on log–log scales, and thus inconsistent with the energetic equivalence rule. Slopes based on quadrat sampling, on the other hand, were on average not significantly different from ?0.75. The rejection of the energetic equivalence rule based on data from pitfall traps here is therefore a sampling artefact. Similar problems may apply to abundance data from virtually all insect trapping methods, and should make us consider re‐examining many of the size‐abundance patterns documented so far. As a large proportion of all animal species are insects, and traps are widely used to estimate abundance, this is a potentially important problem for our general understanding of the relationship between species body size and abundance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号