首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymerase chain reaction (PCR) primers GAG5 and GAG6 were designed based on published γ-gliadin gene sequences and applied to 35 cultivars of closely related spelt (Triticum spelta L.) and hexaploid wheat (T. aestivum L.). Eight tetraploid durum wheat (T. durum Desf.) cultivars were included in the analysis. The obtained PCR products originated from two γ-gliadin genes which were mapped to homeologous chromosomes 1B and 1D and termed GAG56B and GAG56D, respectively. Two alleles of GAG56D differing in a 9-bp deletion/duplication and single nucleotide polymorphism were found. The 18 spelts tested and wheat cultivar ’Chinese Spring’ were discovered to carry a previously unknown γ-gliadin gene, while 16 wheat cultivars possessed its longer, already published allele. Two PCR-based detection systems for the diagnostic alleles were developed and applied. The occurrence of two alleles of GAG56B among the investigated durum wheats correlated with their expression of gluten quality markers γ-gliadins 42 or 45. Received: 10 March 1999 / Accepted: 17 March 1999  相似文献   

2.
Improving the end-use quality of wheat is a key target for many breeding programmes. With the exception of the relationship between glutenin alleles and some dough rheological characters, knowledge concerning the genetic control of wheat quality traits is somewhat limited. A doubled haploid population produced from a cross between two Australian cultivars ‘Trident’ and ‘Molineux’ has been used to construct a linkage map based largely on microsatellite molecular makers. ‘Molineux’ is superior to ‘Trident’ for a number of milling, dough rheology and baking quality characteristics, although by international standards ‘Trident’ would still be regarded as possessing moderately good end-use quality. This population was therefore deemed useful for investigation of wheat end-use quality. A number of significant QTL identified for dough rheological traits mapped to HMW and LMW glutenin loci on chromosomes 1A and 1B. However, QTL associated with dough strength and loaf volume were also identified on chromosome 2A and a significant QTL associated with loaf volume and crumb quality was identified on chromosome 3A. A QTL for flour protein content and milling yield was identified on chromosome 6A and a QTL associated with flour colour reported previously on chromosome 7B was confirmed in this population. The detection of loci affecting dough strength, loaf volume and flour protein content may provide fresh opportunities for the application of marker-assisted selection to improve bread-making quality.  相似文献   

3.
Spelt and common wheat constitute two of the six groups of the hexaploid wheats with an AABBDD genome. Spelt culture has been progressively replaced by that of common wheat which out-yields spelt under high-input conditions. In the last decades, spelt breeders intended to introduce the yield-potential and bread-making qualities of common wheat into spelt, by frequent crossings between accessions of these two different groups. The present study aims at determining the genetic basis of modern spelt cultivars in terms of intra-group variability and inter-group (spelt vs common wheat) distances, by using microsatellite markers developed for common wheat. The allelic composition of 30 spelt and nine common wheat accessions was determined at 17 microsatellite loci. The coefficient of co-ancestry (ƒ) and the genetic distances (1 - proportion of shared alleles) based upon allelic composition were calculated for all pairs of accessions. Two dendrograms were constructed using the UPGMA method. Amplification products were found for all loci on most accessions. A total of 113 alleles was identified, of which 60.2% were specific to spelt or common wheat. The correlation between (1 –ƒ ) and the genetic distance was high (0.701***). The mean pairwise genetic distance was 0.656 ± 0.181 over the 39 accessions, 0.706 ± 0.14 among common wheat and 0.573 ± 0.172 among spelt. The mean genetic distance between spelt and wheat was 0.782 ± 0.113. The two dendrograms were in accordance with each other and clearly separated the spelt from the common wheat accessions. It is concluded that microsatellites developed for common wheat and distances based on the proportion of shared alleles are powerful tools for reconstructing phylogenies in spelt, and that the genetic basis of modern spelt cultivars is narrow despite frequent crosses made with bread wheat. Received: 26 January 2000 / Accepted: 26 May 2000  相似文献   

4.
Genetic diversity of French common wheat germplasm based on gliadin alleles   总被引:24,自引:0,他引:24  
 Analysis of gliadin electrophoretic (APAGE) patterns made it possible to identify 79 alleles at six Gli-1 and Gli-2 loci (from 9 to 18 per locus) and 173 gliadin genotypes in the 187 French common wheat cultivars considered. Six new alleles were registered in the catalogue of gliadin alleles. The genetic diversity of French common wheats was found to be high (H=0.714) and had not changed much during the last 25–50 years. Analysis of genetic distances showed some gradual changes in French wheat germplasm over the course of time. Genetic distances between French and several European wheat germplasm were analysed; genotypes of European wheats were found to relate very distantly to Canadian genotypes. The considerable differentiation of wheat genotypes from different countries and cereal companies might be caused by breeders’ personal preferences and by hidden natural selection specific to each local environment. In French cultivars, genetic variation in earliness, and in the North/South habit of the cultivars studied, correlated significantly with allelic variation at Gli-B1, Gli-A2 and Gli-D2 for earliness, and at Gli-D2 for the North/ South habit. Early and late cultivars are grown mainly in Southern and Northern France, respectively (r 2=0.30). Cultivars having either the 1B/1R translocation or allele Gli-D2g are, on average, later and more resistant to cold; they hence are grown in the North of France. Alternatively, cultivars with the allele Gli-D2m are earlier and cold-sensitive, and are grown in the South of France. Received: 5 February 1997 / Accepted: 19 September 1997  相似文献   

5.
The allelic diversity of high-moleculat-weght glutenin subunits (H WIGS) in Russian and Ukrainian bread wheat cultivars was analyzed. The diversity of spring wheat cultivars for alleles of the Glu-1 loci is characterized by medium values of the polymorphism index (polymorphism information content, PlC), and in winter wheats it varies from high at the Glu-A1 locus to low at the Glu-D1 locus. The spring and winter cultivars differ significantly in the frequencies of alleles of the glutenin loci. The combination of the Glu-A1b, Glu-B1c, and Glu-D1a alleles prevails among the spring cultivars, and the combination of the Glu-A1a, Glu-B1c, and Glu-D1d alleles prevails among the winter cultivars. The distribution of the Glu-1 alleles significantly depends on the moisture and heat supply in the region of origin of the cultivars. Drought resistance is associated with the Glu-D1a allele in the spring wheat and with the Glu-B1b allele in the winter wheat. The sources of the Glu-1 alleles were identified in the spring and wheat cultivars. The analysis of independence of the distribution of the spring and winter cultivars by the market classes and by the alleles of the HMWGS loci showed a highly significant association of the alleles of three Glu-1 loci with the market classes in foreign cultivars and independence or a weak association in the Russian and Ukrainian cultivars. This seems to be due to the absence of a statistically substantiated system of classification of the domestic cultivars on the basis of their quality.  相似文献   

6.
Peng JH  Bai Y  Haley SD  Lapitan NL 《Genetica》2009,135(1):95-122
Genetic diversity of a set of 71 wheat accessions, including 53 biotype 2 Russian wheat aphid (RWA2)-resistant landraces and 18 RWA2 susceptible accessions, was assessed by examining molecular variation at multiple microsatellite (SSR) loci. Fifty-one wheat SSR primer pairs were used, 81 SSR loci were determined, and 545 SSR alleles were detected. These SSR loci covered all the three genomes, 21 chromosomes, and at least 41 of the 42 chromosome arms. Diversity values averaged over SSR loci were high with mean number of SSR alleles/locus = 6.7, mean Shannon’s index (H) = 1.291, and mean Nei’s gene diversity (He) = 0.609. The three wheat genomes ranked as A > D > B and the homoeologous groups ranked as 7 > 3  > 1 > 2 > 6 > 5 > 4 based on the number of alleles per locus. Xgwm136 on chromosome arm 1AS is the most polymorphic SSR locus with the largest number of observed and effective alleles and the highest H and He. Among all 2485 pairs of wheat accessions, genetic distance (GD) ranged from 0.054 to 1.933 and averaged 0.9832. A dendrogram based on GD matrix showed that all the wheat accessions could be grouped into distinct clusters. Most of the susceptible cultivars (13/18) were clustered into groups that contains all or mostly susceptible accessions. Most of the U.S. cultivars belong to a group that is distinguishable from all the different RWA2 resistant groups. Diversity analysis was also conducted separately for subgroups containing 53 RWA2-resistant accessions and 18 RWA2-susceptible accessions. Association mapping revealed 28 SSR loci significantly associated with leaf chlorosis, and 8 with leaf rolling. New chromosome regions associated with RWA2 resistance were detected, and indicated existence of new RWA resistance genes located on chromosomes of all other homoeologous groups in addition to the groups 1 and 7 in bread wheat. This information is helpful for development of mapping populations for RWA2 resistance genes from different phylogenetic groups, and for wise utilization of the RWA-resistant germplasm in wheat breeding programs.  相似文献   

7.
The allelic diversity of high-moleculat-weght glutenin subunits (HMWGS) in Russian and Ukrainian bread wheat cultivars was analyzed. The diversity of spring wheat cultivars for alleles of the Glu-1 loci is characterized by medium values of the polymorphism polymorphism information content (PIC), and in winter wheats it varies from high at the Glu-A1 locus to low at the Glu-D1 locus. The spring and winter cultivars differ significantly in the frequencies of alleles of the glutenin loci. The combination of the Glu-A1b, Glu-B1c, and Glu-D1a alleles prevails among the spring cultivars, and the combination of the Glu-A1a, Glu-B1c, and Glu-D1d alleles prevails among the winter cultivars. The distribution of the Glu-1 alleles significantly depends on the moisture and heat supply in the region of origin of the cultivars. Drought resistance is associated with the Glu-D1a allele in the spring wheat and with the Glu-B1b allele in the winter wheat. The sources of the Glu-1 alleles were identified in the spring and wheat cultivars. The analysis of independence of the distribution of the spring and winter cultivars by the market classes and by the alleles of the HMWGS loci showed a highly significant association of the alleles of three Glu-1 loci with the market classes in foreign cultivars and independence or a weak association in the Russian and Ukrainian cultivars. This seems to be due to the absence of a statistically substantiated system of classification of the domestic cultivars on the basis of their quality.  相似文献   

8.
Diversity in 20 microsatellite loci of wild emmer wheat, Triticum dicoccoides, was examined in 15 populations (135 genotypes) representing a wide range of ecological conditions of soil, temperature, and water availability, in Israel and Turkey. An extensive amount of diversity at microsatellite loci was observed despite the predominantly selfing nature of this plant species. The 20 Gatersleben wheat microsatellites (GWM), representing 13 chromosomes of genomes A and B of wheat, revealed a total of 364 alleles, with an average of 18 alleles per GWM marker (range: 5–26). The proportion of polymorphic loci per population averaged 0.90 (range: 0.45– 1.00); genic diversity, He, averaged 0.50 (range 0.094– 0.736); and Shannon’s information index averaged 0.84 (range 0.166–1.307). The coefficients of genetic distance between populations were high and averaged D=1.862 (range 0.876–3.320), an indication of sharp genetic divergence over short distances. Interpopulation genetic distances showed no association with geographic distance between the population sites of origin, which ruled out a simple isolation by distance model. Genetic dissimilarity values between genotypes were used to produce a dendrogram of the relationships among wild wheat populations by the unweighted pair-group method with arithmetic averages (UPGMA). The results showed that all the wild emmer wheat populations could be distinguished. Microsatellite analysis was found to be highly effective in distinguishing genotypes of T. dicoccoides, originating from diverse ecogeographical sites in Israel and Turkey, with 88% of the 135 genotypes correctly classified into sites of origin by discriminant analysis. Our present microsatellite results are non-random and in agreement with the previously obtained allozyme and RAPD patterns, although the genetic-diversity values obtained with microsatellites are much higher. Significant correlates of microsatellite markers with various climatic and soil factors suggest that, as in allozymes and RAPDs, natural selection causes adaptive microsatellite ecogeographical differentiation, not only in coding, but most importantly in non-coding genomic regions. Hence, the concept of ”junk DNA” needs to be replaced by at least partly regulatory DNA. The obtained results suggest that microsatellite markers are useful for the estimation of genetic diversity in natural populations of T. dicoccoides and for the tagging of agronomically important traits derived from wild emmer wheat. Received: 27 February 2001 / Accepted: 22 March 2001  相似文献   

9.
Durum wheat (Triticum turgidum L. var. durum) is traditionally used for the production of numerous types of pasta, and significant amounts are also used for bread-making, particularly in southern Italy. The research reported here centres on the glutenin subunits 1Dx5 and 1Dy10 encoded by chromosome 1D, and whose presence in hexaploid wheats is positively correlated with higher dough strength. In order to study the effects of stable expression of the 1Dx5 and 1Dy10 glutenin subunits in different durum wheat genotypes, four cultivars commonly grown in the Mediterranean area (‘Svevo’, ‘Creso’, ‘Varano’ and ‘Latino’) were co-transformed, via particle bombardment of cultured immature embryos, with the two wheat genes Glu-D1-1d and Glu-D1-2b encoding the glutenin subunits, and a third plasmid containing the bar gene as a selectable marker. Protein gel analyses of T1 generation seed extracts showed expression of one or both glutenin genes in four different transformed durum wheat plants. One of these transgenic lines, DC2-65, showed co-suppression of all HMW-GS, including the endogenous ones. Transgene stability in the transgenic lines has been studied over four generations (T1–T4). Fluorescence in situ hybridization (FISH) analysis of metaphase chromosomes from T4 plants showed that the integration of transgenes occurred in both telomeric and centromeric regions. The three plasmids were found inserted at a single locus in two lines and in two loci on the same chromosome arm in one line. The fourth line had two transgenic loci on different chromosomes: one with both glutenin plasmids and a different one containing only the construct with the gene encoding the 1Dy10 glutenin subunit. Segregation of these two loci in subsequent generations allowed establishment of two sublines, one containing both 1Dx5 and 1Dy10 and the other containing only 1Dy10. Small-scale quality tests showed that accumulation of Dx5, Dy10 or both in transgenic durum wheat seeds resulted in doughs with stronger mixing characteristics. A. Gadaleta and A. E. Blechl have contributed equally to this work.  相似文献   

10.
Wheat is marketed based on end-use quality characteristics and better knowledge of the underlying genetics of specific quality parameters is essential to enhance the breeding process. A set of 188 recombinant inbred lines from a ‘Louise’ by ‘Penawawa’ mapping population was grown in two crop years at two locations in the Pacific Northwest region of the United States and data were collected on 17 end-use quality traits using established quality analysis protocols. Using an established genetic linkage map, composite interval mapping was used to identify QTL associated with 16 of the 17 quality traits. QTL were found on 13 of the 21 wheat chromosomes. A large number of QTL were located on chromosomes 3B and 4D and coincided with traits for milling quality and starch functionality. Chromosome 3B contained 10 QTL, which were localized to a 26.2 cM region. Chromosome 4D contained 7 QTL, all of which were located on an 18.8 cM region of this chromosome. The majority of the alleles for superior end-use quality were associated with the cultivar Louise. The identified QTL detected remained highly significant independent of grain yield and protein quantity. The identification of these QTL for end-use quality gives key insight into the relationship and complexity of end-use quality traits. It also improves our understanding of these relationships, thereby allowing plant breeders to make valuable gains from selection for these important traits.  相似文献   

11.
The changes of genetic diversity over time were monitored in 504 European barley cultivars released during the 20th century by genotyping with 35 genomic microsatellites. For analysis, the following four temporal groups were distinguished: 1900–1929 (TG1 with 19 cultivars), 1930–1949 (TG2 with 40 cultivars), 1950–1979 (237 cultivars as TG3), and 1980–2000 (TG4 consisting of 208 cultivars). After rarefaction of allelic diversity data to the comparable sample size of 18 varieties, of the 159 alleles found in the first group (TG1) 134 were retained in the last group (TG4) resulting in a loss of only 15.7% of alleles. On the other hand 51 novel alleles were discovered in the group representing the last investigated time period (TG4) in comparison with the TG1. Novel alleles appeared evenly distributed over the genome, almost at all investigated genomic loci, with up to five such novel alleles per locus. Alleles specific for a temporal group were discovered for all investigated time periods, however analysis of molecular variance (AMOVA) did not reveal any significant population structure attributable to temporal decadal grouping. Only 2.77% of the total observed variance was due to differences between the four temporal groups and 1.42% between individual decades of the same temporal group, while 95.81% of the variance was due to variation within temporal groups. The distinction between two-rowed and six-rowed genetic types accounted for 19.5% of the total observed variance by AMOVA, whereas the comparison between ‘winter’ and ‘spring’ types accounted for 17% of the total observed variation. The analysis of linkage disequilibrium did not reveal statistically significant differences between the temporal groups. The results indicated that the impact of breeding effort and variety delivery systems did not result in any significant quantitative losses of genetic diversity in the representative set of barley cultivars over the four time periods.  相似文献   

12.
Genetic diversity in wild wheats and goat grass   总被引:4,自引:0,他引:4  
The genetic structure of 35 populations of wild relatives of cultivated wheats, all collected in Syria and Lebanon, was assessed using ten isozymes. The populations consisted of diploid goat grass, Aegilops speltoides, diploid wild wheats, Triticum monococcum spp. aegilopoides and T. urartu, and tetraploid wild wheat, T. turgidum ssp. dicoccoides. The majority of the populations were polymorphic (P=0–70%) having low within-population mean genetic diversity (Hep=0.05–0.10) and relatively high within-species genetic diversity (Hes=0.14–0.31). The linkage between loci did not seem to be one of the causes for the observed polymorphism. All four species showed significant inbreeding at both the population (0.31–0.64) and species (0.77–0.96) levels, and the extent of inbreeding did not correlate with mating systems. Despite their apparent common ecological and evolutionary history, between-population or between-species level genetic identity was low (I=0.43–0.86). Among the diploid species, populations of Ae. speltoides clustered distinctly from those overlapping clusters of T. monococcum ssp. aegilopoides and T. urartu. The tetraploid species T. turgidum ssp. dicoccoides had relatively less genetic diversity (Hes=0.14) and was highly homozygous (F=0.96). The results suggest that these wild progenitors of cultivated wheats have undergone extensive local differentiation and inbreeding. We discuss the implications of our results on the management of wild wheat and goat grass populations. Received: 12 September 1999 / Accepted: 10 November 1999  相似文献   

13.
The main objective of the present work was to develop a wheat genotype containing both the recessive crossability alleles (kr1kr1kr2kr2), allowing high crossability between 6x wheat and diploid rye, and the 1BL.1RS wheat/rye translocation chromosome. This wheat genotype could be used as a recipient partner in wheat–rye crosses for the efficient introduction of new allelic variation into 1RS in translocation wheats. After crossing the wheat cultivars ‘Mv Magdaléna’ and ‘Mv Béres’, which carry the 1BL.1RS translocation involving the 1RS chromosome arm from ‘Petkus’, with the line ‘Mv9 kr1’, 117 F2 plants were analysed for crossability, ten of which had higher than 50% seed set with rye and thus presumably carried the kr1kr1kr2kr2 alleles. Four of the ten plants contained the 1BL.1RS translocation in the disomic condition as detected by genomic in situ hybridization (GISH). The wheat × rye F1 hybrids produced between these lines and the rye cultivar ‘Kriszta’ were analysed in meiosis using GISH. 1BL.1RS/1R chromosome pairing was detected in 62.4% of the pollen mother cells. The use of fluorescent in situ hybridization (FISH) with the repetitive DNA probes pSc119.2, Afa family and pTa71 allowed the 1R and 1BL.1RS chromosomes to be identified. The presence of the 1RS arm from ‘Kriszta’ besides that of ‘Petkus’ was demonstrated in the F1 hybrids using the rye SSR markers RMS13 and SCM9. In four of the 22 BC1 progenies analysed, only ‘Kriszta’-specific bands were observed with these markers, though the presence of the 1BL.1RS translocation was detected using GISH. It can be concluded that recombination occurred between the ‘Petkus’ and ‘Kriszta’ 1RS chromosome arms in the translocated chromosome in these plants.  相似文献   

14.
Lipoxygenase (LOX) activity is an important factor determining the color of flour and end-use products of wheat. In the present study, quantitative trait loci (QTL) for LOX activity in common wheat were mapped using 71 doubled haploid (DH) lines derived from a Zhongyou 9507 × CA9632 cross, and SSR markers. Two QTL, QLpx.caas.1AL and QLpx.caas-4B, were identified on chromosomes 1AL and 4B, closely associated with LOX activity. The SSR loci Xwmc312 and Xgwm251 proved to be diagnostic and explained 13.4–25.2% of the phenotypic variance for the 1AL locus and 14.3–27.0% for the 4B locus across four environments. The SSR markers Xgwm251 and Xwmc312 were validated across 198 Chinese wheat cultivars and advanced lines and showed highly significant (P < 0.01) association with LOX activity. We further established a multiplexed PCR with SSR marker combination Xwmc312/Xgwm251 to test these wheat cultivars and advanced lines. The results suggested that the marker combination Xwmc312/Xgwm251 is efficient and reliable for evaluating LOX activity and can be used in marker-assisted selection (MAS) for targeting flour color attributes to noodle and other wheat-based products.  相似文献   

15.
Genetic analysis of durable leaf rust resistance in winter wheat   总被引:8,自引:0,他引:8  
Quantitative resistance that delays the epidemic development of leaf rust in wheat is an important source for durable resistance breeding. The Swiss winter wheat variety ’Forno’ shows a high level of quantitative resistance against leaf rust. This resistance has been effective for more than 10 years and can therefore be considered to be durable. In order to map quantitative trait loci (QTL) for durable leaf rust resistance we analysed 204 F5 recombinant inbred lines (RILs) of the cross between the winter wheat ’Forno’ and the winter spelt ’Oberkulmer’ for their level of leaf rust resistance (LR) and leaf tip necrosis (LTN) in four different environments. Both traits showed a continuous distribution and were significantly correlated (r=−0.5). Across environments we detected 8 QTL for leaf rust resistance (6 inherited from ’Forno’) and 10 QTL for the quantitative expression of LTN (6 inherited from ’Forno’). Of the 6 QTL responsible for the durable leaf rust resistance of ’Forno’, 1 major QTL coincided with a thaumatin locus on 7BL explaining 35% of the phenotypic variance. Four QTL for LR coincided with QTL for LTN. At these loci the alleles of ’Forno’ increased the level of resistance as well as the extent of LTN, indicating pleiotropy. Received: 1 July 1999 / Accepted: 30 July 1999  相似文献   

16.
We report the development of microsatellites or simple sequence repeats (SSRs) in the olive tree (Olea europaea L.). Forty three positive clones obtained by the screening of a GA-enriched genomic library were sequenced and primers were designed for 13 microsatellite loci. Five primer pairs amplified polymorphic products of the expected size range. SSR polymorphism was explored in a set of 46 olive cultivars. A total of 26 alleles were detected for the five loci. Heterozygosity ranged from 0.46 to 0.71. Ninety one per cent of the cultivars had unique multilocus genotypes. Microsatellite segregation was studied in a complex population from a cross between the commercial cultivars ’Leccino’ and ’Dolce Agogia’. Received: 3 February 2000 / Accepted: 21 March 2000  相似文献   

17.
Kernel hardness that is conditioned by puroindoline genes has a profound effect on milling, baking and end-use quality of bread wheat. In this study, 219 landraces and 166 historical cultivars from China and 12 introduced wheats were investigated for their kernel hardness and puroindoline alleles, using molecular and biochemical markers. The results indicated that frequencies of soft, mixed and hard genotypes were 42.7, 24.3, and 33.0%, respectively, in Chinese landraces and 45.2, 13.9, and 40.9% in historical cultivars. The frequencies of PINA null, Pinb-D1b and Pinb-D1p genotypes were 43.8, 12.3, and 39.7%, respectively, in hard wheat of landraces, while 48.5, 36.8, and 14.7%, respectively, in historical hard wheats. A new Pinb-D1 allele, designated Pinb-D1t, was identified in two landraces, Guangtouxianmai and Hongmai from the Guizhou province, with the characterization of a glycine to arginine substitution at position 47 in the coding region of Pinb gene. Surprisingly, a new Pina-D1 allele, designated Pina-D1m, was detected in the landrace Hongheshang, from the Jiangsu province, with the characterization of a proline to serine substitution at position 35 in the coding region of Pina gene; it was the first novel mutation found in bread wheat, resulting in a hard endosperm with PINA expression. Among the PINA null genotypes, an allele designed as Pina-D1l, was detected in five landraces with a cytosine deletion at position 265 in Pina locus; while another novel Pina-D1 allele, designed as Pina-D1n, was identified in six landraces, with the characterization of an amino acid change from tryptophan-43 to a ‘stop’ codon in the coding region of Pina gene. The study of puroindoline polymorphism in Chinese wheat germplasm could provide useful information for the further understanding of the molecular basis of kernel hardness in bread wheat.  相似文献   

18.
Soybean [Glycine max (L.) Merr.] sudden death syndrome (SDS) caused by Fusarium solani f. sp. glycines results in severe yield losses. Resistant cultivars offer the most-effective protection against yield losses but resistant cultivars such as ’Forrest’ and ’Pyramid’ vary in the nature of their response to SDS. Loci underlying SDS resistance in ’Essex’ × Forrest are well defined. Our objectives were to identify and characterize loci and alleles that underlie field resistance to SDS in Pyramid×’Douglas’. SDS disease incidence and disease severity were determined in replicated field trials in six environments over 4 years. One hundred and twelve polymorphic DNA markers were compared with SDS disease response among 90 recombinant inbred lines from the cross Pyramid×Douglas. Two quantitative trait loci (QTLs) for resistance to SDS derived their beneficial alleles from Pyramid, identified on linkage group G by BARC-Satt163 (261-bp allele, P=0.0005, R2=16.0%) and linkage group N by BARC-Satt080 (230-bp allele, P=0.0009, R2=15.6%). Beneficial alleles of both QTLs were previously identified in Forrest. A QTL for re- sistance to SDS on linkage group C2 identified by BARC-Satt307 (292-bp allele, P=0.0008, R2=13.6%) derived the beneficial allele from Douglas. A beneficial allele of this QTL was previously identified in Essex. Recombinant inbred lines that carry the beneficial alleles for all three QTLs for resistance to SDS were significantly (P≤0.05) more resistant than other recombinant inbred lines . Among these recombinant inbred lines resistance to SDS was environmentally stable. Therefore, gene pyramiding will be an effective method for developing cultivars with stable resistance to SDS. Received: 20 October 1999 / Accepted: 22 May 2001  相似文献   

19.
Fire blight (Erwinia amylovora) causes serious damage to pome fruit orchards, and identification of germplasm with heritable disease resistance is therefore crucial. Two dominant SCAR (sequence characterised amplified region) marker alleles (AE10-375 and GE-8019), flanking a previously identified QTL (quantitative trait locus) for resistance to fire blight on ‘Fiesta’ linkage group 7 in apple cultivars related to ‘Cox’s Orange Pippin’, were screened on 205 apple cultivars. Both marker alleles were present in 22% of the cultivars, indicating presence of the QTL allele for tolerance, and both were lacking in 25%, indicating homozygosity for absence of the QTL tolerance allele. However, 33% had only the marker allele AE10-375, while 20% had only GE-8019, suggesting that some cultivars with the dominant alleles for both of the flanking markers can carry these on separate chromosomes and may lack the QTL allele for tolerance. In 2009 and 2010, terminal shoots of greenhouse-grown grafted trees of 21 cultivars (only 20 in 2010) were inoculated with Erwinia amylovora. ‘Idared’ (susceptible) and ‘Enterprise’ (tolerant) were included as controls. Disease severity for each cultivar was expressed as percentage of necrosis in relation to entire length of shoot, and the ranking of cultivars in 2009 and 2010 was compared with a Spearman rank correlation test, P < 0.01. A relationship between presence of both flanking marker alleles for tolerance and level of fire blight tolerance was confirmed with a Mann–Whitney U-test, P < 0.01 in 2009, and P < 0.05 in 2010. A PCO (principal coordinate) analysis based on band profiles obtained with 12 SSR (simple sequence repeat) loci produced three loose clusters, two of which contained known offspring of ‘Cox’s Orange Pippin’, and one with cultivars that were either unrelated or had an unknown origin. Cases where DNA markers did not predict level of fire blight damage as expected, were, however, as common among descendants of ‘Cox’s Orange Pippin’ as among apparently unrelated cultivars. Obviously the ‘Fiesta’ LG 7 QTL has some predictive value, both for known ‘Cox’ relatives and others, but more efficient markers would be desirable for marker-assisted selection.  相似文献   

20.
A major gene determining non-specific adult-plant disease resistance against stripe rust (Puccinia striiformis) designated Yrns-B1 was mapped by using a cross between ’Lgst.79–74’ (resistant) and ’Winzi’ (susceptible). Analyzing F3 lines of two consecutive experimental years contrary modes of inheritance were observed due to the intermediate character of the gene and the difference in the disease pressure during the seasons. Using the disease scoring data of both experimental years independently two maps were constructed detecting Yrns-B1 20.5 and 21.7 cM, respectively, proximal to the wheat microsatellite (WMS) marker Xgwm493 on the short arm of chromosome 3BS. The genetic relationships to other major genes or to quantitative trait loci controlling adult plant disease resistance against rusts in wheat are discussed. Received: 27 May 1999 / Accepted: 28 September 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号