首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Highly Pathogenic H5N1 Influenza Virus Infection in Migratory Birds   总被引:11,自引:0,他引:11  
H5N1avianinfluenza virus(AIV)has emerged as a pathogenic entityfor a variety of species,including humans,inre-cent years.Here we report an outbreak among migratory birds on Lake Qinghaihu,China,in May and June2005,inwhich more than a thousand birds were affected.Pancreatic necrosis and abnormal neurological symptoms were the majorclinical features.Sequencing of the complete genomes of four H5N1AIVstrains revealedthemto be reassortants relatedto a peregrine falconisolate from Hong Kong an…  相似文献   

2.
Wild-bird surveillance in North America for avian influenza (AI) viruses with a goal of early identification of the Asian H5N1 highly pathogenic AI virus has identified at least six low-pathogenicity H5N1 AI viruses between 2004 and 2006. The hemagglutinin (HA) and neuraminidase (NA) genes from all 6 H5N1 viruses and an additional 38 North American wild-bird-origin H5 subtype and 28 N1 subtype viruses were sequenced and compared with sequences available in GenBank by phylogenetic analysis. Both HA and NA were phylogenetically distinct from those for viruses from outside of North America and from those for viruses recovered from mammals. Four of the H5N1 AI viruses were characterized as low pathogenicity by standard in vivo pathotyping tests. One of the H5N1 viruses, A/MuteSwan/MI/451072-2/06, was shown to replicate to low titers in chickens, turkeys, and ducks. However, transmission of A/MuteSwan/MI/451072-2/06 was more efficient among ducks than among chickens or turkeys based on virus shed. The 50% chicken infectious dose for A/MuteSwan/MI/451072-2/06 and three other wild-waterfowl-origin H5 viruses were also determined and were between 10(5.3) and 10(7.5) 50% egg infective doses. Finally, seven H5 viruses representing different phylogenetic clades were evaluated for their antigenic relatedness by hemagglutination inhibition assay, showing that the antigenic relatedness was largely associated with geographic origin. Overall, the data support the conclusion that North American H5 wild-bird-origin AI viruses are low-pathogenicity wild-bird-adapted viruses and are antigenically and genetically distinct from the highly pathogenic Asian H5N1 virus lineage.  相似文献   

3.
Vegetation History and Archaeobotany - Potential Last Glacial Maximum (LGM, 26,500–15,000 bp) members of the Eastern Beringia (now Alaska-Yukon, northwest North America) vascular...  相似文献   

4.

Background

Elucidating geographic locations from where migratory birds are recruited into adult breeding populations is a fundamental but largely elusive goal in conservation biology. This is especially true for species that breed in remote northern areas where field-based demographic assessments are logistically challenging.

Methodology/Findings

Here we used hydrogen isotopes (δD) to determine natal origins of migrating hatch-year lesser scaup (Aythya affinis) harvested by hunters in the United States from all North American flyways during the hunting seasons of 1999–2000 (n = 412) and 2000–2001 (n = 455). We combined geospatial, observational, and analytical data sources, including known scaup breeding range, δD values of feathers from juveniles at natal sites, models of δD for growing-season precipitation, and scaup band-recovery data to generate probabilistic natal origin landscapes for individual scaup. We then used Monte Carlo integration to model assignment uncertainty from among individual δD variance estimates from birds of known molt origin and also from band-return data summarized at the flyway level. We compared the distribution of scaup natal origin with the distribution of breeding population counts obtained from systematic long-term surveys.

Conclusions/Significance

Our analysis revealed that the proportion of young scaup produced in the northern (above 60°N) versus the southern boreal and Prairie-Parkland region was inversely related to the proportions of breeding adults using these regions, suggesting that despite having a higher relative abundance of breeding adults, the northern boreal region was less productive for scaup recruitment into the harvest than more southern biomes. Our approach for evaluating population declines of migratory birds (particularly game birds) synthesizes all available distributional data and exploits the advantages of intrinsic isotopic markers that link individuals to geography.  相似文献   

5.
Given the possibility of highly pathogenic H5N1 avian influenza arriving in North America and monitoring programs that have been established to detect and track it, we review intercontinental movements of birds. We divided 157 bird species showing regular intercontinental movements into four groups based on patterns of movement-one of these groups (breed Holarctic, winter Eurasia) fits well with the design of the monitoring programs (i.e., western Alaska), but the other groups have quite different movement patterns, which would suggest the importance of H5N1 monitoring along the Pacific, Atlantic, and Gulf coasts of North America.  相似文献   

6.
Dane F  Lang P  Huang H  Fu Y 《Heredity》2003,91(3):314-321
Castanea is one of the many plant genera with a disjunct distribution pattern between eastern Asia and eastern North America. Five species from three sections of the genus were investigated to examine genetic divergence between eastern Asian and eastern North American species. A total of 62 native populations were sampled for allelic variation at isozyme loci. The Chinese chestnut C. mollissima had the highest genetic variability, while the American C. dentata had the lowest genetic variability. The highest intracontinental genetic identities were observed between the Allegheny and Ozark chinkapins (0.931) and between C. mollissima and C. seguinii (0.870), while lower identities were detected between the American C. pumila and C. dentata (0.720-0.729). In intercontinental comparisons, genetic identities of 0.505, 0.495 and 0.507 were observed between the American chestnut and the Chinese C. mollissima, C. seguinii and C. henryi, respectively, whereas the Ozark chinkapin C. pumila var. ozarkensis had lower identities of 0.469, and 0.435 with C. mollissima and C. seguinii, respectively, but a slightly higher identity of 0.520 with C. henryi, the Chinese chinkapin. Divergence times were estimated at 10-13 million years before present between C. dentata and C. mollissima, and C. pumila var. ozarkensis and C. henryi.  相似文献   

7.
8.
Migratory birds have evolved elaborate physiological adaptations to travelling, the implications for their susceptibility to avian influenza are however unknown. Three groups of stonechats (Saxicola torquata) from (I) strongly migrating, (II) weakly migrating and (III) non-migrating populations were experimentally infected with HPAIV H5N1. The different bird groups of this insectivorous passerine species were infected in autumn, when the migrating populations clearly exhibit migratory restlessness. Following infection, all animals succumbed to the disease from 3 through 7 days post inoculation. Viral shedding, antigen distribution in tissues, and survival time did not differ between the three populations. However, notably, endothelial tropism of the HPAIV infection was exclusively seen in the group of resident birds. In conclusion, our data document for the first time the high susceptibility of an insectivorous passerine species to H5N1 infection, and the epidemiological role of these passerine birds is probably limited due to their high sensitivity to HPAIV H5N1 infection. Despite pronounced inherited differences in migratory status, the groups were generally indistinguishable in their susceptibility, survival time, clinical symptoms and viral shedding. Nevertheless, the migratory status partly influenced pathogenesis in the way of viral tropism.  相似文献   

9.
The role of wild birds in the spread of influenza H5N1 virus remains speculative and the ecology of influenza A viruses in nature is largely unstudied. There is an urgent need for multidisciplinary studies to explore the ecology of avian influenza viruses in wild birds and the environment to support ecological interpretation of the source of disease outbreaks in poultry.  相似文献   

10.
11.
Surveillance for highly pathogenic avian influenza viruses (HPAIV) in wild birds is logistically demanding due to the very low rates of virus detection. Serological approaches may be more cost effective as they require smaller sample sizes to identify exposed populations. We hypothesized that antigenic differences between classical Eurasian H5 subtype viruses (which have low pathogenicity in chickens) and H5N1 viruses of the Goose/Guangdong/96 H5 lineage (which are HPAIV) may be used to differentiate populations where HPAIVs have been circulating, from those where they have not. To test this we performed hemagglutination inhibition assays to compare the reactivity of serum samples from wild birds in Mongolia (where HPAIV has been circulating, n = 1,832) and Europe (where HPAIV has been rare or absent, n = 497) to a panel of reference viruses including classical Eurasian H5 (of low pathogenicity), and five HPAIV H5N1 antigens of the Asian lineage A/Goose/Guangdong/1/96. Antibody titres were detected against at least one of the test antigens for 182 Mongolian serum samples (total seroprevalence of 0.10, n = 1,832, 95% adjusted Wald confidence limits of 0.09–0.11) and 25 of the European sera tested (total seroprevalence of 0.05, n = 497, 95% adjusted Wald confidence limits of 0.03–0.07). A bias in antibody titres to HPAIV antigens was found in the Mongolian sample set (22/182) that was absent in the European sera (0/25). Although the interpretation of serological data from wild birds is complicated by the possibility of exposure to multiple strains, and variability in the timing of exposure, these findings suggest that a proportion of the Mongolian population had survived exposure to HPAIV, and that serological assays may enhance the targeting of traditional HPAIV surveillance toward populations where isolation of HPAIV is more likely.  相似文献   

12.
13.
Probably the best way to predict mutations is to find the cause for mutations, by which the cause–mutation relationship can be built. However, many causes which have resulted in mutations in the past might not leave any trace due to the changes in environments. As well, the current proteins may not be sensitive to the causes, which led to mutations in the past, because of evolution. Thus we might have recorded many mutations, but few of their corresponding causes, and it would be difficult to establish the one-to-one cause–mutation relationship. However, the internal power engineering mutations within a protein would exist, of which randomness should play an important role. Since 1999, we have developed three methods to quantify the randomness within a protein by which we can build a cause–mutation relationship because we can classify the occurrence and non-occurrence of mutation as unity and zero, and transfer this relationship into the classification problem, which can be solved using logistic regression. Recently, we used the logistic regression to predict the mutation positions in H5N1 hemagglutinins from influenza A virus, and applied the amino-acid mutating probability to predict the would-be-mutated amino acids at predicted positions as the concept-initiated study. However, we still need to conduct many proof-of-concept studies to test whether this cause–mutation relationship is independent of protein subtypes, whether the logistic regression is powerful enough, etc. In this study, we attempted to use the logistic regression to predict the mutation positions in H3N2 hemagglutinins of influenza A virus from North America to answer the questions in the proof-of-concept stage.  相似文献   

14.
Traditional concepts of the Bering Land Bridge as a zone of predominantly eastward expansion from Eurasia and a staging area for subsequent colonization of lower latitudes in North America led to early inferences regarding biogeographic histories of North American faunas, many of which remain untested. Here we apply a host-parasite comparative phylogeographical (HPCP) approach to evaluate one such history, by testing competing biogeographic hypotheses for five lineages of host-specific parasites shared by the collared pika (Ochotona collaris) and American pika (Ochotona princeps) of North America. We determine whether the southern host species (O. princeps) was descended from a northern ancestor or vice versa. Three parasite phylogenies revealed patterns consistent with the hypothesis of a southern origin, which is corroborated by four additional parasite lineages restricted to O. princeps. This finding reverses the traditional narrative for the origins of North American pikas and highlights the role of dispersal from temperate North America into Beringia in structuring northern diversity considerably prior to the Holocene. By evaluating multiple parasite lineages simultaneously, the study demonstrates the power of HPCP for resolving complex biogeographic histories that are not revealed by characteristics of the host alone.  相似文献   

15.
16.
Abstract

Influenza epidemics and pandemics are caused by influenza A virus. The cell surface protein of hemagglutinin and neuraminidase is responsible for viral infection and release of progeny virus on the host cell membrane. Now 18 hemagglutinin and 11 neuraminidase subtypes are identified. The avian influenza virus of H5N1 is an emergent threat to public health issues. To control the influenza viral infection it is necessary to develop antiviral inhibitors and vaccination. In the present investigation we carried out 50 ns Molecular Dynamics simulation on H5 hemagglutinin of Influenza A virus H5N1 complexed with fluorinated sialic acid by substituting fluorine atoms at any two hydroxyls of sialic acid by considering combinatorial combination. The binding affinity between the protein–ligand complex system is investigated by calculating pair interaction energy and MM-PBSA binding free energy. All the complex structures are stabilized by hydrogen bonding interactions between the H5 protein and the ligand fluorinated sialic acid. It is concluded from all the analyses that the fluorinated complexes enhance the inhibiting potency against H5 hemagglutinin and the order of inhibiting potency is SIA-F9 ? SIA-F2 ≈ SIA-F7 ≈ SIA-F2F4 ≈ SIA-F2F9 ≈ SIA-F7F9 > SIA-F7F8 ≈ SIA-F2F8 ≈ SIA-F8F9 > SIA-F4 ≈ SIA-F4F7 ≈ SIA-F4F8 ≈ SIA-F8 ≈ SIA-F2F7 ≈ SIA > SIA-F4F9. This study suggests that one can design the inhibitor by using the mono fluorinated models SIA-F9, SIA-F2 and SIA-F7 and difluorinated models SIA-F2F4, SIA-F2F9 and SIA-F7F9 to inhibit H5 of H5N1 to avoid Influenza A viral infection.

Communicated by Ramaswamy H. Sarma  相似文献   

17.

Background

The highly pathogenic H5N1 avian influenza emerged in the year 1996 in Asia, and has spread to Europe and Africa recently. At present, effective monitoring and data analysis of H5N1 are not sufficient in Chinese mainland.

Methodology/Principal Findings

During the period from April of 2004 to August of 2007, we collected 14,472 wild bird samples covering 56 species of 10 orders in 14 provinces of China and monitored the prevalence of flu virus based on RT-PCR specific for H5N1 subtype. The 149 positive samples involved six orders. Anseriformes had the highest prevalence while Passeriformes had the lowest prevalence (2.70% versus 0.36%). Among the 24 positive species, mallard (Anas platyrhynchos) had the highest prevalence (4.37%). A difference of prevalence was found among 14 provinces. Qinghai had a higher prevalence than the other 13 provinces combined (3.88% versus 0.43%). The prevalence in three species in Qinghai province (Pintail (Anas acuta), Mallard (Anas platyrhynchos) and Tufted Duck (Aythya fuligula)) were obviously higher than those in other 13 provinces. The results of sequence analysis indicated that the 17 strains isolated from wild birds were distributed in five clades (2.3.1, 2.2, 2.5, 6, and 7), which suggested that genetic diversity existed among H5N1 viruses isolated from wild birds. The five isolates from Qinghai came from one clade (2.2) and had a short evolutionary distance with the isolates obtained from Qinghai in the year 2005.

Conclusions/Significance

We have measured the prevalence of H5N1 virus in 56 species of wild birds in 14 provinces of China. Continuous monitoring in the field should be carried out to know whether H5N1 virus can be maintained by wild birds.  相似文献   

18.
A large number of highly pathogenic avian influenza (HPAI) H5N1 outbreaks in poultry and wild birds have been reported in Europe since 2005. Distinct spatial patterns in poultry and wild birds suggest that different environmental drivers and potentially different spread mechanisms are operating. However, previous studies found no difference between these two outbreak types when only the effect of physical environmental factors was analysed. The influence of physical and anthropogenic environmental variables and interactions between the two has only been investigated for wild bird outbreaks. We therefore tested the effect of these environmental factors on HPAI H5N1 outbreaks in poultry, and the potential spread mechanism, and discussed how these differ from those observed in wild birds. Logistic regression analyses were used to quantify the relationship between HPAI H5N1 outbreaks in poultry and environmental factors. Poultry outbreaks increased with an increasing human population density combined with close proximity to lakes or wetlands, increased temperatures and reduced precipitation during the cold season. A risk map was generated based on the identified key factors. In wild birds, outbreaks were strongly associated with an increased Normalized Difference Vegetation Index (NDVI) and lower elevation, though they were similarly affected by climatic conditions as poultry outbreaks. This is the first study that analyses the differences in environmental drivers and spread mechanisms between poultry and wild bird outbreaks. Outbreaks in poultry mostly occurred in areas where the location of farms or trade areas overlapped with habitats for wild birds, whereas outbreaks in wild birds were mainly found in areas where food and shelters are available. The different environmental drivers suggest that different spread mechanisms might be involved: HPAI H5N1 spread to poultry via both poultry and wild birds, whereas contact with wild birds alone seems to drive the outbreaks in wild birds.  相似文献   

19.
Many invasive ants, including the Argentine ant Linepithema humile, form expansive supercolonies, within which intraspecific aggression is absent. The behavioral relationships among introduced Argentine ant populations at within-country or within-continent scales have been studied previously, but the behavioral relationships among intercontinental populations have not been examined. The present study investigated the levels of aggression among intercontinental Argentine ant populations by transporting live ants from Europe and California to Japan and conducting aggression tests against Japanese populations. Workers from the dominant supercolonies of Europe and California did not show aggressive behavior toward workers from the dominant supercolony of Japan, whereas they fought vigorously against workers from minor supercolonies. The three massive supercolonies, together with Argentine ants from Macaronesia, may be the largest non-aggressive unit formed by a social insect species in which intraspecific aggression exists. Absence or low levels of aggression at transcontinental scale, which may have derived from low genetic variation, may help introduced Argentine ants maintain expansive supercolonies. The lack of aggression implies possible frequent exchanges of individuals among the intercontinental populations mediated by human activities.  相似文献   

20.
The full effects of biological invasions may be underestimated in many areas because of cryptogenic species, which are those that can be identified as neither native nor introduced. In North America, the cattails Typha latifolia, T. angustifolia, and their hybrid T. × glauca are increasingly aggressive invaders of wetlands. There is a widespread belief that T. latifolia is native to North America and T. angustifolia was introduced from Europe, although there has so far been little empirical support for the latter claim. We used microsatellite data and chloroplast DNA sequences to compare T. latifolia and T. angustifolia genotypes from eastern North America and Europe. In both species, our data revealed a high level of genetic similarity between North American and European populations that is indicative of relatively recent intercontinental dispersal. More specifically, the most likely scenario suggested by Approximate Bayesian Computation was an introduction of T. angustifolia from Europe to North America. We discuss the potential importance of our findings in the context of hybridization, novel genomes, and increasingly invasive behaviour in North American Typha spp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号