首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
3.
4.
2-Ketocyclohexanecarboxyl coenzyme A (2-ketochc-CoA) hydrolase has been proposed to catalyze an unusual hydrolytic ring cleavage reaction as the last unique step in the pathway of anaerobic benzoate degradation by bacteria. This enzyme was purified from the phototrophic bacterium Rhodopseudomonas palustris by sequential Q-Sepharose, phenyl-Sepharose, gel filtration, and hydroxyapatite chromatography. The sequence of the 25 N-terminal amino acids of the purified hydrolase was identical to the deduced amino acid sequence of the badI gene, which is located in a cluster of genes involved in anaerobic degradation of aromatic acids. The deduced amino acid sequence of badI indicates that 2-ketochc-CoA hydrolase is a member of the crotonase superfamily of proteins. Purified BadI had a molecular mass of 35 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and a native molecular mass of 134 kDa as determined by gel filtration. This indicates that the native form of the enzyme is a homotetramer. The purified enzyme was insensitive to oxygen and catalyzed the hydration of 2-ketochc-CoA to yield pimelyl-CoA with a specific activity of 9.7 μmol min−1 mg of protein−1. Immunoblot analysis using polyclonal antiserum raised against the purified hydrolase showed that the synthesis of BadI is induced by growth on benzoate and other proposed benzoate pathway intermediates but not by growth on pimelate or succinate. An R. palustris mutant, carrying a chromosomal disruption of badI, did not grow with benzoate and other proposed benzoate pathway intermediates but had wild-type doubling times on pimelate and succinate. These data demonstrate that BadI, the 2-ketochc-CoA hydrolase, is essential for anaerobic benzoate metabolism by R. palustris.  相似文献   

5.
Microbial anaerobic and so-called hybrid pathways for degradation of aromatic compounds contain β-oxidation-like steps. These reactions convert the product of the opening of the aromatic ring to common metabolites. The hybrid phenylacetate degradation pathway is encoded in Escherichia coli by the paa operon containing genes for 10 enzymes. Previously, we have analyzed protein-protein interactions among the enzymes catalyzing the initial oxidation steps in the paa pathway (Grishin, A. M., Ajamian, E., Tao, L., Zhang, L., Menard, R., and Cygler, M. (2011) J. Biol. Chem. 286, 10735–10743). Here we report characterization of interactions between the remaining enzymes of this pathway and show another stable complex, PaaFG, an enoyl-CoA hydratase and enoyl-Coa isomerase, both belonging to the crotonase superfamily. These steps are biochemically similar to the well studied fatty acid β-oxidation, which can be catalyzed by individual monofunctional enzymes, multifunctional enzymes comprising several domains, or enzymatic complexes such as the bacterial fatty acid β-oxidation complex. We have determined the structure of the PaaFG complex and determined that although individually PaaF and PaaG are similar to enzymes from the fatty acid β-oxidation pathway, the structure of the complex is dissimilar from bacterial fatty acid β-oxidation complexes. The PaaFG complex has a four-layered structure composed of homotrimeric discs of PaaF and PaaG. The active sites of PaaF and PaaG are adapted to accept the intermediary components of the Paa pathway, different from those of the fatty acid β-oxidation. The association of PaaF and PaaG into a stable complex might serve to speed up the steps of the pathway following the conversion of phenylacetyl-CoA to a toxic and unstable epoxide-CoA by PaaABCE monooxygenase.  相似文献   

6.
A gene, badH, whose predicted product is a member of the short-chain dehydrogenase/reductase family of enzymes, was recently discovered during studies of anaerobic benzoate degradation by the photoheterotrophic bacterium Rhodopseudomonas palustris. Purified histidine-tagged BadH protein catalyzed the oxidation of 2-hydroxycyclohexanecarboxyl coenzyme A (2-hydroxychc-CoA) to 2-ketocyclohexanecarboxyl-CoA. These compounds are proposed intermediates of a series of three reactions that are shared by the pathways of cyclohexanecarboxylate and benzoate degradation used by R. palustris. The 2-hydroxychc-CoA dehydrogenase activity encoded by badH was dependent on the presence of NAD(+); no activity was detected with NADP(+) as a cofactor. The dehydrogenase activity was not sensitive to oxygen. The enzyme has apparent K(m) values of 10 and 200 microM for 2-hydroxychc-CoA and NAD(+), respectively. Western blot analysis with antisera raised against purified His-BadH identified a 27-kDa protein that was present in benzoate- and cyclohexanecarboxylate-grown but not in succinate-grown R. palustris cell extracts. The active form of the enzyme is a homotetramer. badH was determined to be the first gene in an operon, termed the cyclohexanecarboxylate degradation operon, containing genes required for both benzoate and cyclohexanecarboxylate degradation. A nonpolar R. palustris badH mutant was unable to grow on benzoate or cyclohexanecarboxylate but had wild-type growth rates on succinate. Cells blocked in expression of the entire cyclohexanecarboxylate degradation operon excreted cyclohex-1-ene-1-carboxylate into the growth medium when given benzoate. This confirms that cyclohex-1-ene-1-carboxyl-CoA is an intermediate of anaerobic benzoate degradation by R. palustris. This compound had previously been shown not to be formed by Thauera aromatica, a denitrifying bacterium that degrades benzoate by a pathway that is slightly different from the R. palustris pathway. 2-Hydroxychc-CoA dehydrogenase does not participate in anaerobic benzoate degradation by T. aromatica and thus may serve as a useful indicator of an R. palustris-type benzoate degradation pathway.  相似文献   

7.
We isolated a strain of Rhodopseudomonas palustris (RCB100) by selective enrichment in light on 3-chlorobenzoate to investigate the steps that it uses to accomplish anaerobic dechlorination. Analyses of metabolite pools as well as enzyme assays suggest that R. palustris grows on 3-chlorobenzoate by (i) converting it to 3-chlorobenzoyl coenzyme A (3-chlorobenzoyl–CoA), (ii) reductively dehalogenating 3-chlorobenzoyl–CoA to benzoyl-CoA, and (iii) degrading benzoyl-CoA to acetyl-CoA and carbon dioxide. R. palustris uses 3-chlorobenzoate only as a carbon source and thus incorporates the acetyl-CoA that is produced into cell material. The reductive dechlorination route used by R. palustris for 3-chlorobenzoate degradation differs from those previously described in that a CoA thioester, rather than an unmodified aromatic acid, is the substrate for complete dehalogenation.  相似文献   

8.
Regulation of benzoate-CoA ligase in Rhodopseudomonas palustris   总被引:1,自引:0,他引:1  
Abstract: The first step in the anaerobic pathway of benzoate degradation by Rhodopseudomonas palustris is catalyzed by benzoate-coenzyme A ligase. To study factors influencing the synthesis of this enzyme, a polyclonal antiserum was prepared and in immunoblot assays. Benzoate-CoA ligase was synthesized when cells were grown with benzoate, as well as with hydroxyl- and methyl-substituted benzoates. Partially reduced alicyclic compounds proposed to be intermediates in the benzoate pathway also induced benzoate-CoA ligase. Ligase synthesis was repressed by oxygen. The diversity of inducers is consistent with the observation that benzoate is a central intermediate in the degradation of a variety of aromatic acids with more complex structures.  相似文献   

9.
To construct a bacterial catalyst for bioconversion of toluene and several alkyl and chloro- and nitro-substituted derivatives into the corresponding benzoates, the upper TOL operon of plasmid pWW0 of Pseudomonas putida was fully reassembled as a single gene cassette along with its cognate regulatory gene, xylR. The corresponding DNA segment was then targeted to the chromosome of a P. putida strain by using a genetic technique that allows deletion of all recombinant tags inherited from previous cloning steps and leaves the otherwise natural strain bearing exclusively the DNA segment encoding the phenotype of interest. The resulting strains grew on toluene as the only carbon source through a two-step process: conversion of toluene into benzoate, mediated by the upper TOL enzymes, and further metabolism of benzoate through the housekeeping ortho-ring cleavage pathway of the catechol intermediate.  相似文献   

10.
Acrylamide, a neurotoxin and suspected carcinogen, is produced by industrial processes and during the heating of foods. In this study, the microbial diversity of acrylamide metabolism has been expanded through the isolation and characterization of a new strain of Rhodopseudomonas palustris capable of growth with acrylamide under photoheterotrophic conditions. The newly isolated strain grew rapidly with acrylamide under photoheterotrophic conditions (doubling time of 10 to 12 h) but poorly under anaerobic dark or aerobic conditions. Acrylamide was rapidly deamidated to acrylate by strain Ac1, and the subsequent degradation of acrylate was the rate-limiting reaction in cell growth. Acrylamide metabolism by succinate-grown cultures occurred only after a lag period, and the induction of acrylamide-degrading activity was prevented by the presence of protein or RNA synthesis inhibitors. 13C nuclear magnetic resonance studies of [1,2,3-13C]acrylamide metabolism by actively growing cultures confirmed the rapid conversion of acrylamide to acrylate but failed to detect any subsequent intermediates of acrylate degradation. Using concentrated cell suspensions containing natural abundance succinate as an additional carbon source, [13C]acrylate consumption occurred with the production and then degradation of [13C]propionate. Although R. palustris strain Ac1 grew well and with comparable doubling times for each of acrylamide, acrylate, and propionate, R. palustris strain CGA009 was incapable of significant acrylamide- or acrylate-dependent growth over the same time course, but grew comparably with propionate. These results provide the first demonstration of anaerobic photoheterotrophic bacterial acrylamide catabolism and provide evidence for a new pathway for acrylate catabolism involving propionate as an intermediate.  相似文献   

11.
12.
Anaerobic activation of benzene is expected to represent a novel biochemistry of environmental significance. Therefore, benzene metabolism was investigated in Geobacter metallireducens, the only genetically tractable organism known to anaerobically degrade benzene. Trace amounts (<0.5 μM) of phenol accumulated in cultures of Geobacter metallireducens anaerobically oxidizing benzene to carbon dioxide with the reduction of Fe(III). Phenol was not detected in cell-free controls or in Fe(II)- and benzene-containing cultures of Geobacter sulfurreducens, a Geobacter species that cannot metabolize benzene. The phenol produced in G. metallireducens cultures was labeled with 18O during growth in H218O, as expected for anaerobic conversion of benzene to phenol. Analysis of whole-genome gene expression patterns indicated that genes for phenol metabolism were upregulated during growth on benzene but that genes for benzoate or toluene metabolism were not, further suggesting that phenol was an intermediate in benzene metabolism. Deletion of the genes for PpsA or PpcB, subunits of two enzymes specifically required for the metabolism of phenol, removed the capacity for benzene metabolism. These results demonstrate that benzene hydroxylation to phenol is an alternative to carboxylation for anaerobic benzene activation and suggest that this may be an important metabolic route for benzene removal in petroleum-contaminated groundwaters, in which Geobacter species are considered to play an important role in anaerobic benzene degradation.  相似文献   

13.
The bacterium Acinetobacter baylyi uses the branched β-ketoadipate pathway to metabolize aromatic compounds. Here, the multiple-level regulation of expression of the pca-qui operon encoding the enzymes for protocatechuate and quinate degradation was studied. It is shown that both activities of the IclR-type regulator protein PcaU at the structural gene promoter pcaIp, namely protocatechuate-dependent activation of pca-qui operon expression as well as repression in the absence of protocatechuate, can be observed in a different cellular background (Escherichia coli) and therefore are intrinsic to PcaU. The regulation of PcaU expression is demonstrated to be carbon source dependent according to the same pattern as the pca-qui operon. The increase of the pcaU gene copy number leads to a decrease of the basal expression at pcaIp, indicating that the occupancy of the PcaU binding site is well balanced and depends on the concentration of PcaU in the cell. Luciferase is used as a reporter to demonstrate strong repression of pcaIp when benzoate, a substrate of the catechol branch of the pathway, is present in addition to substrates of the protocatechuate branch (cross-regulation). The same repression pattern was observed for promoter pcaUp. Thus, three promoters involved in gene expression of enzymes of the protocatechuate branch (pobAp upstream of pobA, pcaIp, and pcaUp) are strongly repressed in the presence of benzoate. The negative effect of protocatechuate on pobA expression is not based on a direct sensing of the metabolite by PobR, the specific regulator of pobA expression.  相似文献   

14.
15.
Anaerobic benzoate degradation by the phototrophic bacterium Rhodopseudomonas palustris has been proposed to proceed via aromatic ring reduction reactions leading to cyclohex-1-ene-1-carboxyl-coenzyme A (CoA) formation. The alicyclic product is then proposed to undergo three β-oxidation-like modifications resulting in ring cleavage. Illuminated suspensions of benzoate-grown cells converted [7-14C]cyclohex-1-ene-1-carboxylate to intermediates that comigrated with cyclohex-1-ene-1-carboxyl-CoA, 2-hydroxycyclohexanecar-boxyl-CoA, 2-ketocyclohexanecarboxyl-CoA, and pimelyl-CoA by thin-layer chromatography. This set of intermediates was also formed by cells grown anaerobically or aerobically on cyclohex-1-ene-1-carboxylate, indicating that benzoate-grown and cyclohex-1-ene-1-carboxylate-grown cells degrade this alicyclic acid by the same catabolic route. Four enzymatic activities proposed to be required for conversion of cyclohex-1-ene-1-carboxylate to pimelyl-CoA were detected at 3- to 10-fold-higher levels in benzoate-grown cells than in succinate-grown cells. These were cyclohex-1-ene-1-carboxylate-CoA ligase, cyclohex-1-ene-1-carboxyl-CoA hydratase, 2-hydroxycyclohexanecarboxyl-CoA dehydrogenase, and 2-ketocyclohexanecarboxyl-CoA hydrolase (ring cleaving). Pimelyl-CoA was identified in hydrolase reaction mixtures as the product of alicyclic ring cleavage. The results provide a first demonstration of an alicyclic ring cleavage activity.  相似文献   

16.
The metabolism of benzoate, cyclohex-1-ene carboxylate, and cyclohexane carboxylate by “Syntrophus aciditrophicus” in cocultures with hydrogen-using microorganisms was studied. Cyclohexane carboxylate, cyclohex-1-ene carboxylate, pimelate, and glutarate (or their coenzyme A [CoA] derivatives) transiently accumulated during growth with benzoate. Identification was based on comparison of retention times and mass spectra of trimethylsilyl derivatives to the retention times and mass spectra of authentic chemical standards. 13C nuclear magnetic resonance spectroscopy confirmed that cyclohexane carboxylate and cyclohex-1-ene carboxylate were produced from [ring-13C6]benzoate. None of the metabolites mentioned above was detected in non-substrate-amended or heat-killed controls. Cyclohexane carboxylic acid accumulated to a concentration of 260 μM, accounting for about 18% of the initial benzoate added. This compound was not detected in culture extracts of Rhodopseudomonas palustris grown phototrophically or Thauera aromatica grown under nitrate-reducing conditions. Cocultures of “S. aciditrophicus” and Methanospirillum hungatei readily metabolized cyclohexane carboxylate and cyclohex-1-ene carboxylate at a rate slightly faster than the rate of benzoate metabolism. In addition to cyclohexane carboxylate, pimelate, and glutarate, 2-hydroxycyclohexane carboxylate was detected in trace amounts in cocultures grown with cyclohex-1-ene carboxylate. Cyclohex-1-ene carboxylate, pimelate, and glutarate were detected in cocultures grown with cyclohexane carboxylate at levels similar to those found in benzoate-grown cocultures. Cell extracts of “S. aciditrophicus” grown in a coculture with Desulfovibrio sp. strain G11 with benzoate or in a pure culture with crotonate contained the following enzyme activities: an ATP-dependent benzoyl-CoA ligase, cyclohex-1-ene carboxyl-CoA hydratase, and 2-hydroxycyclohexane carboxyl-CoA dehydrogenase, as well as pimelyl-CoA dehydrogenase, glutaryl-CoA dehydrogenase, and the enzymes required for conversion of crotonyl-CoA to acetate. 2-Ketocyclohexane carboxyl-CoA hydrolase activity was detected in cell extracts of “S. aciditrophicus”-Desulfovibrio sp. strain G11 benzoate-grown cocultures but not in crotonate-grown pure cultures of “S. aciditrophicus”. These results are consistent with the hypothesis that ring reduction during syntrophic benzoate metabolism involves a four- or six-electron reduction step and that once cyclohex-1-ene carboxyl-CoA is made, it is metabolized in a manner similar to that in R. palustris.  相似文献   

17.
TOL plasmid pWW0 from Pseudomonas putida mt-2 encodes catabolic enzymes required for the oxidation of toluene and xylenes. The structural genes for these catabolic enzymes are clustered into two operons, the xylCMABN operon, which encodes a set of enzymes required for the transformation of toluene/xylenes to benzoate/toluates, and the xylXYZLTEGFJQKIH operon, which encodes a set of enzymes required for the transformation of benzoate/toluates to Krebs cycle intermediates. The latter operon can be divided physically and functionally into two parts, the xylXYZL cluster, which is involved in the transformation of benzoate/toluates to (methyl)catechols, and the xylTEGFJQKIH cluster, which is involved in the transformation of (methyl)catechols to Krebs cycle intermediates. Genes isofunctional to xylXYZL are present in Acinetobacter calcoaceticus, and constitute a benzoate-degradative pathway, while xylTEGFJQKIH homologous encoding enzymes of a methylphenol-degradative pathway and a naphthalene-degradative pathway are present on plasmid pVI150 from P. putida CF600, and on plasmid NAH7 from P. putida PpG7, respectively. Comparison of the nucleotide sequences of the xylXYZLTEGFJQKIH genes with other isofunctional genes suggested that the xylTEGFJQKIH genes on the TOL plasmid diverged from these homologues 20 to 50 million years ago, while the xylXYZL genes diverged from the A. calcoaceticus homologues 100 to 200 million years ago. In codons where amino acids are not conserved, the substitution rate in the third base was higher than that in synonymous codons. This result was interpreted as indicating that both single and multiple nucleotide substitutions contributed to the amino acid-substituting mutations, and hence to enzyme evolution. This observation seems to be general because mammalian globin genes exhibit the same tendency.  相似文献   

18.
Anaerobic degradation of complex organic compounds by microorganisms is crucial for development of innovative biotechnologies for bioethanol production and for efficient degradation of environmental pollutants. In natural environments, the degradation is usually accomplished by syntrophic consortia comprised of different bacterial species. This strategy allows consortium organisms to reduce efforts required for maintenance of the redox homeostasis at each syntrophic level. Cellular mechanisms that maintain the redox homeostasis during the degradation of aromatic compounds by one organism are not fully understood. Here we present a hypothesis that the metabolically versatile phototrophic bacterium Rhodopseudomonas palustris forms its own syntrophic consortia, when it grows anaerobically on p-coumarate or benzoate as a sole carbon source. We have revealed the consortia from large-scale measurements of mRNA and protein expressions under p-coumarate, benzoate and succinate degrading conditions using a novel computational approach referred as phenotype fingerprinting. In this approach, marker genes for known R. palustris phenotypes are employed to determine the relative expression levels of genes and proteins in aromatics versus non-aromatics degrading condition. Subpopulations of the consortia are inferred from the expression of phenotypes and known metabolic modes of the R. palustris growth. We find that p-coumarate degrading conditions may lead to at least three R. palustris subpopulations utilizing p-coumarate, benzoate, and CO2 and H2. Benzoate degrading conditions may also produce at least three subpopulations utilizing benzoate, CO2 and H2, and N2 and formate. Communication among syntrophs and inter-syntrophic dynamics in each consortium are indicated by up-regulation of transporters and genes involved in the curli formation and chemotaxis. The N2-fixing subpopulation in the benzoate degrading consortium has preferential activation of the vanadium nitrogenase over the molybdenum nitrogenase. This subpopulation in the consortium was confirmed in an independent experiment by consumption of dissolved nitrogen gas under the benzoate degrading conditions.  相似文献   

19.
n-Butanol is generated as a natural product of metabolism by several microorganisms, but almost all grow at mesophilic temperatures. A synthetic pathway for n-butanol production from acetyl coenzyme A (acetyl-CoA) that functioned at 70°C was assembled in vitro from enzymes recruited from thermophilic bacteria to inform efforts for engineering butanol production into thermophilic hosts. Recombinant versions of eight thermophilic enzymes (β-ketothiolase [Thl], 3-hydroxybutyryl-CoA dehydrogenase [Hbd], and 3-hydroxybutyryl-CoA dehydratase [Crt] from Caldanaerobacter subterraneus subsp. tengcongensis; trans-2-enoyl-CoA reductase [Ter] from Spirochaeta thermophila; bifunctional acetaldehyde dehydrogenase/alcohol dehydrogenase [AdhE] from Clostridium thermocellum; and AdhE, aldehyde dehydrogenase [Bad], and butanol dehydrogenase [Bdh] from Thermoanaerobacter sp. strain X514) were utilized to examine three possible pathways for n-butanol. These pathways differed in the two steps required to convert butyryl-CoA to n-butanol: Thl-Hbd-Crt-Ter-AdhE (C. thermocellum), Thl-Hbd-Crt-Ter-AdhE (Thermoanaerobacter X514), and Thl-Hbd-Crt-Ter-Bad-Bdh. n-Butanol was produced at 70°C, but with different amounts of ethanol as a coproduct, because of the broad substrate specificities of AdhE, Bad, and Bdh. A reaction kinetics model, validated via comparison to in vitro experiments, was used to determine relative enzyme ratios needed to maximize n-butanol production. By using large relative amounts of Thl and Hbd and small amounts of Bad and Bdh, >70% conversion to n-butanol was observed in vitro, but with a 60% decrease in the predicted pathway flux. With more-selective hypothetical versions of Bad and Bdh, >70% conversion to n-butanol is predicted, with a 19% increase in pathway flux. Thus, more-selective thermophilic versions of Bad, Bdh, and AdhE are needed to fully exploit biocatalytic n-butanol production at elevated temperatures.  相似文献   

20.
Photoheterotrophic metabolism of two meta-hydroxy-aromatic acids, meta-, para-dihydroxybenzoate (protocatechuate) and meta-hydroxybenzoate, was investigated in Rhodopseudomonas palustris. When protocatechuate was the sole organic carbon source, photoheterotrophic growth in R. palustris was slow relative to cells using compounds known to be metabolized by the benzoyl coenzyme A (benzoyl-CoA) pathway. R. palustris was unable to grow when meta-hydroxybenzoate was provided as a sole source of organic carbon under photoheterotrophic growth conditions. However, in cultures supplemented with known benzoyl-CoA pathway inducers (para-hydroxybenzoate, benzoate, or cyclohexanoate), protocatechuate and meta-hydroxybenzoate were taken up from the culture medium. Further, protocatechuate and meta-hydroxybenzoate were each removed from cultures containing both meta-hydroxy-aromatic acids at equimolar concentrations in the absence of other organic compounds. Analysis of changes in culture optical density and in the concentration of soluble organic compounds indicated that the loss of these meta-hydroxy-aromatic acids was accompanied by biomass production. Additional experiments with defined mutants demonstrated that enzymes known to participate in the dehydroxylation of para-hydroxybenzoyl-CoA (HbaBCD) and reductive dearomatization of benzoyl-CoA (BadDEFG) were required for metabolism of protocatechuate and meta-hydroxybenzoate. These findings indicate that, under photoheterotrophic growth conditions, R. palustris can degrade meta-hydroxy-aromatic acids via the benzoyl-CoA pathway, apparently due to the promiscuity of the enzymes involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号