共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Margherita Bertuzzi Markus Schrettl Laura Alcazar-Fuoli Timothy C. Cairns Alberto Mu?oz Louise A. Walker Susanne Herbst Maryam Safari Angela M. Cheverton Dan Chen Hong Liu Shinobu Saijo Natalie D. Fedorova Darius Armstrong-James Carol A. Munro Nick D. Read Scott G. Filler Eduardo A. Espeso William C. Nierman Hubertus Haas Elaine M. Bignell 《PLoS pathogens》2014,10(10)
3.
4.
Chong Wang Ping Zhan Le Wang Rong Zeng Yongnian Shen Guixia Lv Dongmei Li Shuwen Deng Weida Liu 《Mycopathologia》2014,178(1-2):53-61
Invasive aspergillosis (IA) is a major concern in patients with severe immune deficiency. As antifungal susceptibility varies in different fungal pathogens, accurate and timely identification of species is becoming imperative for guidance of therapy and reducing high mortality rates in patients with IA. But, in fact, the diagnosis is challenging and new validated techniques are required for the detection and identification of clinically relevant isolates. The laser capture microdissection (LCM) system enables analysis of cytologically and/or phenotypically defined cell types from heterogeneous tissue and has been used in diagnosis and fungal species identification in pulmonary aspergillosis of white storks. To establish the experimental foundation for clinical application of the system, we microdissected and collected Blankophor-stained single hyphal strands from tissue cryosections of murine model of invasive pulmonary aspergillosis (IPA) with A. fumigatus by LCM, subsequently processed for DNA extraction, PCR sequencing, and species molecular identification. The sensitivity of LCM–PCR sequencing was 89 % (89/100), and the specificity was 100 %. Moreover, the positive predictive value and negative predictive value were 100 and 78.43 %, respectively. The result approved that the LCM-based methods had the potential for accurately diagnosis and rapidly identification fungal pathogens of IPA. 相似文献
5.
6.
7.
8.
9.
10.
Aspergillus fumigatus is a saprophytic fungus that causes a range of diseases in humans including invasive aspergillosis. All forms of disease begin with the inhalation of conidia, which germinate and develop. Four stages of early development were evaluated using the gel free system of isobaric tagging for relative and absolute quantitation to determine the full proteomic profile of the pathogen. A total of 461 proteins were identified at 0, 4, 8, and 16 h and fold changes for each were established. Ten proteins including the hydrophobin rodlet protein RodA and a protein involved in melanin synthesis Abr2 were found to decrease relative to conidia. To generate a more comprehensive view of early development, a whole genome microarray analysis was performed comparing conidia to 8 and 16 h of growth. A total of 1871 genes were found to change significantly at 8 h with 1001 genes up-regulated and 870 down-regulated. At 16 h, 1235 genes changed significantly with 855 up-regulated and 380 down-regulated. When a comparison between the proteomics and microarray data was performed at 8 h, a total of 22 proteins with significant changes also had corresponding genes that changed significantly. When the same comparison was performed at 16 h, 12 protein and gene combinations were found. This study, the most comprehensive to date, provides insights into early pathways activated during growth and development of A. fumigatus. It reveals a pathogen that is gearing up for rapid growth by building translation machinery, generating ATP, and is very much committed to aerobic metabolism. 相似文献
11.
Aspergillus fumigatus is one of the most important human fungal pathogens, causing life-threatening diseases. Since humans inhale hundreds to thousands of fungal conidia every day, the lower respiratory tract is the primary site of infection. Current interaction networks of the innate immune response attribute fungal recognition and detection to alveolar macrophages, which are thought to be the first cells to get in contact with the fungus. At present, these networks are derived from in vitro or in situ assays, as the peculiar physiology of the human lung makes in vivo experiments, including imaging on the cell-level, hard to realize. We implemented a spatio-temporal agent-based model of a human alveolus in order to perform in silico experiments of a virtual infection scenario, for an alveolus infected with A. fumigatus under physiological conditions. The virtual analog captures the three-dimensional alveolar morphology consisting of the two major alveolar epithelial cell types and the pores of Kohn as well as the dynamic process of respiration. To the best of our knowledge this is the first agent-based model of a dynamic human alveolus in the presence of respiration. A key readout of our simulations is the first-passage-time of alveolar macrophages, which is the period of time that elapses until the first physical macrophage-conidium contact is established. We tested for random and chemotactic migration modes of alveolar macrophages and varied their corresponding parameter sets. The resulting first-passage-time distributions imply that randomly migrating macrophages fail to find the conidium before the start of germination, whereas guidance by chemotactic signals derived from the alveolar epithelial cell associated with the fungus enables a secure and successful discovery of the pathogen in time. 相似文献
12.
Purpose of Review
Chronic pulmonary aspergillosis (CPA) is a serious long-term fungal disease of the lung with a worldwide prevalence. Treatment of CPA is not straightforward given the often-multiple associated co-morbidities, complex clinical picture, drug interactions, toxicities and intolerances.Recent Findings
First line treatment is oral itraconazole or voriconazole. In the event of intolerance or toxicity, patients may be swapped from itraconazole to voriconazole or vice versa. In the event of resistance or further intolerance, third line treatment with posaconazole could be initiated. In those with pan-azole resistance, short-term courses of intravenous liposomal amphotericin B or micafungin are fourth line therapy, keeping in mind the nephrotoxic effects of amphotericin B.Summary
The available evidence for current treatments in CPA is limited and based mostly on retrospective cohort studies. There is a real need to raise awareness of this devastating disease to enable early treatment as well as prospective drug trials and studies to identify potential patient factors that correlate with progression, severity and overall outcomes in order to target future therapies.13.
14.
15.
Slesiona S Gressler M Mihlan M Zaehle C Schaller M Barz D Hube B Jacobsen ID Brock M 《PloS one》2012,7(2):e31223
Invasive bronchopulmonary aspergillosis (IBPA) is a life-threatening disease in immunocompromised patients. Although Aspergillus terreus is frequently found in the environment, A. fumigatus is by far the main cause of IBPA. However, once A. terreus establishes infection in the host, disease is as fatal as A. fumigatus infections. Thus, we hypothesized that the initial steps of disease establishment might be fundamentally different between these two species. Since alveolar macrophages represent one of the first phagocytes facing inhaled conidia, we compared the interaction of A. terreus and A. fumigatus conidia with alveolar macrophages. A. terreus conidia were phagocytosed more rapidly than A. fumigatus conidia, possibly due to higher exposure of β-1,3-glucan and galactomannan on the surface. In agreement, blocking of dectin-1 and mannose receptors significantly reduced phagocytosis of A. terreus, but had only a moderate effect on phagocytosis of A. fumigatus. Once phagocytosed, and in contrast to A. fumigatus, A. terreus did not inhibit acidification of phagolysosomes, but remained viable without signs of germination both in vitro and in immunocompetent mice. The inability of A. terreus to germinate and pierce macrophages resulted in significantly lower cytotoxicity compared to A. fumigatus. Blocking phagolysosome acidification by the v-ATPase inhibitor bafilomycin increased A. terreus germination rates and cytotoxicity. Recombinant expression of the A. nidulans wA naphthopyrone synthase, a homologue of A. fumigatus PksP, inhibited phagolysosome acidification and resulted in increased germination, macrophage damage and virulence in corticosteroid-treated mice. In summary, we show that A. terreus and A. fumigatus have evolved significantly different strategies to survive the attack of host immune cells. While A. fumigatus prevents phagocytosis and phagolysosome acidification and escapes from macrophages by germination, A. terreus is rapidly phagocytosed, but conidia show long-term persistence in macrophages even in immunocompetent hosts. 相似文献
16.
Bioluminescent Aspergillus fumigatus, a New Tool for Drug Efficiency Testing and In Vivo Monitoring of Invasive Aspergillosis 下载免费PDF全文
Matthias Brock Grgory Jouvion Sabrina Droin-Bergre Olivier Dussurget Marie-Anne Nicola Oumaïma Ibrahim-Granet 《Applied microbiology》2008,74(22):7023-7035
Aspergillus fumigatus is the main cause of invasive aspergillosis in immunocompromised patients, and only a limited number of drugs for treatment are available. A screening method for new antifungal compounds is urgently required, preferably an approach suitable for in vitro and in vivo studies. Bioluminescence imaging is a powerful tool to study the temporal and spatial resolutions of the infection and the effectiveness of antifungal drugs. Here, we describe the construction of a bioluminescent A. fumigatus strain by fusing the promoter of the glyceraldehyde-3-phosphate dehydrogenase gene from A. fumigatus with the luciferase gene from Photinus pyralis to control the expression of the bioluminescent reporter. A. fumigatus transformed with this construct revealed high bioluminescence under all tested growth conditions. Furthermore, light emission correlated with the number of conidia used for inoculation and with the biomass formed after different incubation times. The bioluminescent strains were suitable to study the effectiveness of antifungals in vitro by several independent methods, including the determination of light emission with a microplate reader and the direct visualization of light emission with an IVIS 100 system. Moreover, when glucocorticoid-treated immunosuppressed mice were infected with a bioluminescent strain, light emission was detected from infected lungs, allowing the visualization of the progression of invasive aspergillosis. Therefore, this new bioluminescence tool is suitable to study the in vitro effectiveness of drugs and the disease development, localization, and burden of fungi within tissues and may also provide a powerful tool to study the effectiveness of antifungals in vivo. 相似文献
17.
18.
Objectives
Invasive pulmonary aspergillosis (IPA) caused by Aspergillus fumigatus, Aspergillus flavus, or Aspergillus niger is associated with high mortality. We evaluated the efficacy and compared the therapeutic effect differences of voriconazole (VRC) in combination with caspofungin (CAS) in transiently neutropenic rats infected by A. fumigatus, A. flavus, or A. niger.Methods
Treatment groups consisted of VRC (10 mg/kg q12 h) monotherapy, CAS (1 mg/kg/day) monotherapy, combination of VRC (10 mg/kg q12 h) + CAS (1 mg/kg/day), and no drug for 10 consecutive days. The efficacy and the difference in the treatments were evaluated through prolongation of survival, reduction in serum galactomannan levels and residual fungal burden, and histological studies.Results
For all the strains, the combination of VRC and CAS led to significant prolongation in survival (P < 0.05) and reduction in residual fungal burden (P < 0.05) compared with CAS alone, and decrease in serum galactomannan levels (P < 0.05) compared with either agent alone. The survival in the combined therapy groups was significantly improved compared to VRC monotherapy for the strains of A. flavus and A. niger (P < 0.05), but no significant difference for the strains of A. fumigatus (P > 0.05).Conclusions
Combination of VRC and CAS was synergistic in IPA by A. flavus and A. niger, but small efficacy benefits in IPA by A. fumigatus. 相似文献19.
环境中普遍存在的腐生丝状真菌烟曲霉Aspergillus fumigatus在免疫功能低下或缺陷的人群中可引起多种急慢性疾病,包括致死率很高的侵袭性曲霉病。细胞壁作为真菌的细胞外骨架结构不仅起维持细胞形状、保护细胞抵抗外界压力等作用,在病原真菌极性生长、入侵新的生态域、启动宿主免疫反应中也起重要作用。细胞壁组分还是真菌感染的分子诊断基础和开发抗真菌药物的理想靶标。近几十年来烟曲霉细胞壁的遗传、生物化学及免疫学方向的研究使其成为研究真菌细胞壁的模式真菌。本文主要概述烟曲霉细胞壁的组分、分子组装机制及其在真菌生存和感染中的作用,并对未来研究方向提出了展望。 相似文献